首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Inverse gas chromatography (IGC) has been used to measure the interaction parameter between two twin-tailed cationic surfactants. Didodecyldimethylammonium (DDAB) and dioctadecyldimethylammonium (DODAB) bromides and their mixtures were used as stationary phases. IGC and DSC techniques have been used for the determination of the temperature zone of working. The activity coefficients at infinite dilution (on a mole fraction basis) were calculated for eleven probe solutes on each pure surfactant column. Values of interaction parameter between surfactants obtained at four weight fractions of the mixtures and at five temperatures are positive and suggested that the interactions is more unfavourable with the increment of DODAB concentration in the mixture. The results are interpreted on the basis of partial miscibility between DDAB and DODAB.  相似文献   

2.
We have characterized the phase behavior of mixtures of the cationic surfactant cetyltrimethylammonium bromide (CTAB) and the organic salt 3-sodium-2-hydroxy naphthoate (SHN) over a wide range of surfactant concentrations using polarizing optical microscopy and X-ray diffraction. A variety of liquid crystalline phases, such as hexagonal, lamellar with and without curvature defects, and nematic, are observed in these mixtures. At high temperatures the curvature defects in the lamellar phase are annealed gradually on decreasing the water content. However, at lower temperatures these two lamellar structures are separated by an intermediate phase, where the bilayer defects appear to order into a lattice. The ternary phase diagram shows a high degree of symmetry about the line corresponding to equimolar CTAB/SHN composition, as in the case of mixtures of cationic and anionic surfactants.  相似文献   

3.
In this work we studied and compared the physicochemical properties of the catanionic mixtures cetyltrimethyl-ammonium bromide–sodium dodecanoate, cetyltrimethyl-ammonium bromide–sodium perfluorodacanoate, octyltrimethylammonium bromide–sodium perfluorodacanoate and cetyltrimethyl-ammonium bromide–sodium octanoate by a combination of rheological, transmission electron microscopy (TEM) and polarized optical microscopy measurements. The binary mixtures of the surfactants have been analyzed at different mixed ratios and total concentration of the mixture. Mixtures containing a perfluorinated surfactant are able to form lamellar liquid crystals and stable spontaneous vesicles. Meanwhile, system containing just hydrogenated surfactants form hexagonal phases or they are arranged in elongated aggregates.  相似文献   

4.
Dependences of the surface tension of aqueous solutions of cationic (dodecylpyridinium bromide) and nonionic (Tween 80, Triton X-100) surfactants and their mixtures on total surfactant concentration and solution composition were studied. The values of critical micellization concentration (CMC) and excess free energy of adsorption were determined from tensiometric measurements. Based on Rubingh–Rosen model (approximation of the theory of regular solutions), the compositions of micelles and adsorption layers at the solution–air interface as well as parameters of interaction between the molecules of cationic and nonionic surfactants were calculated for the systems indicated above. It was established that, in the case of surfactant mixtures with considerable difference in the CMCs, the micelles of individual surfactant with lower CMC value are formed. The effect of negative deviation from the ideality during the adsorption of surfactants from mixed solutions at the solution–air interface was disclosed. It was shown that the interaction energy depends significantly on the composition of mixed systems.  相似文献   

5.
The evolution of the microstructure and composition occurring in the aqueous solutions of di-alkyl chain cationic/nonionic surfactant mixtures has been studied in detail using small angle neutron scattering, SANS. For all the systems studied we observe an evolution from a predominantly lamellar phase, for solutions rich in di-alkyl chain cationic surfactant, to mixed cationic/nonionic micelles, for solutions rich in the nonionic surfactant. At intermediate solution compositions there is a region of coexistence of lamellar and micellar phases, where the relative amounts change with solution composition. A number of different di-alkyl chain cationic surfactants, DHDAB, 2HT, DHTAC, DHTA methyl sulfate, and DISDA methyl sulfate, and nonionic surfactants, C12E12 and C12E23, are investigated. For these systems the differences in phase behavior is discussed, and for the mixture DHDAB/C12E12 a direct comparison with theoretical predictions of phase behavior is made. It is shown that the phase separation that can occur in these mixed systems is induced by a depletion force arising from the micellar component, and that the size and volume fraction of the micelles are critical factors.  相似文献   

6.
7.
正、负离子表面活性剂混合体系溶致液晶生成的相行为   总被引:1,自引:0,他引:1  
研究了烷基(C8,C12,C14)三甲基溴化铵、烷基(C12,C14)溴化吡啶与烷基(C8,C12)硫酸钠混合体系溶致液晶形成的条件与结构的变化.在高浓度的水溶液中,随着正、负离子表面活性剂摩尔比接近于1,液晶结构由六角相过渡为层状相.表面活性剂非极性链长改变,对相行为影响显著,短碳链的正、负离子表面活性剂混合体系,在等摩尔比时,体系为层状液晶或立方液晶为主,夹杂少许沉淀.随碳链增长,两类表面活性剂间的静电吸引效果表现为生成沉淀的摩尔比例范围变宽,沉淀量增多,共存的液晶相减少,甚至消失.若只改变正离子的极性头基,季胺盐比吡啶盐与烷基硫酸盐的作用要强,形成不溶物的混合摩尔比例范围更宽.  相似文献   

8.
Conductivity of water-in-oil microemulsions stabilized by mixed surfactants   总被引:3,自引:0,他引:3  
The electrical conductivity of D2O-in-n-heptane microemulsions stabilized by cationic/nonionic surfactant mixtures was studied as a function of D2O content, surfactant concentration, and surfactant mixture composition. The surfactants employed were cationic di-n-didodecyldimethylammonium bromide, DDAB, nonionic poly(oxyethylene) monododecyl ethers, C12EJ, with J=3-8 and 23, nonionic polymeric surfactants of the type PEO-PPO-PEO (Pluronic), and the reverse structure analogues (Pluronic R). Qualitative structural information was drawn from a comparison between the measured conductivity and that predicted by the charge fluctuation model for spherical droplets. The conductivity versus water content curves were found to be typical for water-in-oil systems composed of spherical droplets. From the effect of blending nonionic surfactant with DDAB on the measured conductivities, it was concluded that microemulsion conductivity is independent of the concentration of cationic surfactant (DDAB). This finding agrees well with theoretical microemulsion conductivity models.  相似文献   

9.
Surface properties of systems that are mixtures of ionic surfactants and sugar derivatives-anionic surfactant sodium dodecyl sulfate and n-dodecyl-beta-D-maltoside (SDS/DM) and cationic surfactant dodecyltrimethylammonium bromide and n-dodecyl-beta-D-glucoside (DTABr/DG)-were investigated. The experimental results obtained from measurements of surface tension of mixtures with various ratio of ionic to nonionic components were analyzed by two independent theories. First is Motomura theory, derived from the Gibbs-Duhem equation, allowing for indirect evaluation of the composition of mixed monolayers and the Gibbs energies of adsorption, corresponding to mutual interaction between surfactants in mixed adsorbed film. As second theory we used our newly developed theoretical model of adsorption of ionic-nonionic surfactant mixtures. Using this approach, we were able to describe the experimental surface tension isotherms for mixtures of surface-active sugar derivatives and ionic surfactants. We obtained a good agreement with experimental data using the same set of model parameters for a whole range of studied compositions of a given surfactant mixture. The values of surface excess calculated from both theories agreed with each other with a reasonable accuracy. However, the newly developed model of adsorption of ionic-nonionic surfactant mixtures has the advantage of straightforward determination of surface layer composition. By the solution of equations of adsorption, one can obtain directly the values of surface excess of all components (surfactant ions, counterions, and nonionic surfactants molecules), which are present in the investigated system.  相似文献   

10.
We applied a molecular assembly formed in an aqueous surfactant mixture of cationic cetyltrimethylammonium bromide (CTAB) and anionic sodium octylsulfate (SOS) as templates of mesoporous silica materials. The hexagonal pore size can be controlled between 3.22 and 3.66 nm with the mixed surfactant system. In addition, we could observe the lamellar structure of the mixed surfactants with precursor molecules, which strongly shows the possibility of precise control of both the pore size and the structure of pores by changing the mixing ratio of surfactants. Moreover, use of the cationic surfactant having longer hydrophobic chain like stearyltrimethylammonium bromide (STAB) caused the increase in d(100) space and shifted the point of phase transition from hexagonal phase to lamellar phase to lower concentration of SOS.  相似文献   

11.
The miscibility of poly(D,L-lactide-co-glycolide) (PLG) with three amphiphilic molecules and the interaction of the PLG/surfactant mixtures with DNA at air/water interface are investigated by pi-A isotherms, Brewster angle microscopy (BAM) and atomic force microscopy (AFM) techniques. The pi-A isotherms of the PLG mixtures with cationic C(12)AzoC(6)PyBr, and C(12)AzoC(6)N(CH(3))(3)Br, are quite different from the pi-A isotherm of pure PLG on water subphase. In contrast to the case, the pi-A isotherm of PLG mixed with nonionic C(12)AzoC(6)OPy is almost identical to the pure PLG except some increasing of molecular area. Similar phenomena are observed on DNA subphase. The in situ BAM and ex situ AFM observations demonstrate that the dispersion of PLG at air/water interface becomes good when it mixes with the two cationic surfactants, whereas quite poor due to the phase separation when it mixes with the nonionic amphiphilic molecule. Based on these results we conclude that the cationic surfactants can affect the conformation change of PLG at air/water interface and figure a well miscibility with polymer whereas the nonionic amphiphilic molecule presents poor miscibility. In addition, the even mixing of the PLG and the cationic surfactants is favorable for the adsorption to DNA more effectively.  相似文献   

12.
Controllable synthesis of conducting polypyrrole nanostructures   总被引:3,自引:0,他引:3  
Wire-, ribbon-, and sphere-like nanostructures of polypyrrole have been synthesized by solution chemistry methods in the presence of various surfactants (anionic, cationic, or nonionic surfactant) with various oxidizing agents [ammonium persulfate (APS) or ferric chloride (FeCl3), respectively]. The surfactants and oxidizing agents used in this study have played a key role in tailoring the nanostructures of polypyrrole during the polymerization. It is inferred that the lamellar structures of a mesophase are formed by self-assembly between the cations of a long chain cationic surfactant [cetyltrimethylammonium bromide (CTAB) or dodeyltrimethylammonium bromide (DTAB)] and anions of oxidizing agent APS. These layered mesostructures are presumed to act as templates for the formation of wire- and ribbon-like polypyrrole nanostructures. In contrast, if a short chain cationic surfactant octyltrimethylammonium bromide (OTAB) or nonionic surfactant poly(ethylene glycol) mono-p-nonylphenyl ether (Opi-10) is used, sphere-like polypyrrole nanostructures are obtained, whichever of the oxidizing agents mentioned above is used. In this case, micelles resulting from self-assembly among surfactant molecules are envisaged to serve as the templates while the polymerization happens. It is also noted that, if anionic surfactant sodium dodeyl surfate (SDS) is used, no characteristic nanostructures of polypyrrole were observed. This may be attributed to the doping effect of anionic surfactants into the resulting polypyrrole chains, and as a result, micelles self-assembled among surfactant molecules are broken down during the polymerization. The effects of monomer concentration, surfactant concentration, and surfactant chain length on the morphologies of the resulting polypyrrole have been investigated in detail. The molecular structures, composition, and electrical properties of the nanostructured polypyrrole have also been investigated in this study.  相似文献   

13.
The formation of mixed aggregates has been investigated in the mixture of oppositely charged surfactants vastly differing in molecular geometry and size. The systems considered is mixture of the cationic gemini surfactant, ethanediyl-1,2-bis(dodecyldimethylammonium bromide), and anionic surfactant, sodium dodecyl sulfate. Various mixed nano- and microaggregates (micelles, vesicles, thin lamellar sheets, and tubules) were formed depending on bulk composition and total surfactant concentration. Two types of aggregates were found in precipitate, the tubules as prevailing aggregates on the gemini-rich side, and vesicles as prevailing aggregates on the SDS-rich side. The tubules formation was ascribed to mutual influence of specific structure of cationic dimeric surfactant and electrostatic interactions at the bilayer/solution interface. The proposed mechanism involved the formation of lamellar sheets, which rolled-up into tubules.  相似文献   

14.
The total reflection X-ray absorption fine structure (TR-XAFS) technique was applied to adsorbed films at the surface of aqueous solutions of surfactant mixtures composed of dodecyltrimethylammonium bromide (DTAB) and dodecyltrimethylammonium tetrafluoroborate (DTABF4). The obtained XAFS spectra were expressed as linear combinations of two specific spectra corresponding to fully hydrated bromide ions (free-Br) and partially dehydrated bromide ions adsorbed to the hydrophilic groups of surfactant ions (bound-Br) at the surface. The ratio of free- and bound-Br ions was determined as a function of surface tension and surface composition of the surfactants. Taking also the results in our previous studies on the DTAB - dodecyltrimethylammonium chloride (DTAC) and 1-hexyl-3-methylimidazolium bromide (HMIMBr) - 1-hexyl-3-methylimidazolium tetrafluoroborate (HMIMBF4) mixed systems into consideration, the relation between counterion distribution and miscibility of counterions at the solution surface was deduced for the surfactant mixtures having common surfactant ions but different counterions.  相似文献   

15.
Neutron reflectivity, NR, and surface tension have been used to study the adsorption at the air-solution interface of mixtures of the dialkyl chain cationic surfactant dihexadecyl dimethyl ammonium bromide (DHDAB) and the nonionic surfactants monododecyl triethylene glycol (C12E3), monododecyl hexaethylene glycol (C12E6), and monododecyl dodecaethylene glycol (C12E12). The adsorption behavior of the surfactant mixtures with solution composition shows a marked departure from ideal mixing that is not consistent with current theories of nonideal mixing. For all three binary surfactant mixtures there is a critical composition below which the surface is totally dominated by the cationic surfactant. The onset of nonionic surfactant adsorption (expressed as a mole fraction of the nonionic surfactant) increases in composition as the ethylene oxide chain length of the nonionic cosurfactant increases from E3 to E12. Furthermore, the variation in the adsorption is strongly correlated with the variation in the phase behavior of the solution that is in equilibrium with the surface. The adsorbed amounts of DHDAB and the nonionic cosurfactants have been used to estimate the monomer concentration that is in equilibrium with the surface and are shown to be in reasonable qualitative agreement with the variation in the mixed critical aggregation concentration (cac).  相似文献   

16.
Interaction and stability of binary mixtures of cationic surfactants hexadecyltrimethylammonium bromide (HTAB) or hexadecylpyridinium bromide (HPyBr) with nonionic surfactant decanoyl-N-methyl-glucamide (Mega-10) have been studied at different mole fraction of cationic surfactants by using interfacial tension measurements and fluorescence probe techniques. From interfacial tension measurements, the critical micellar concentration and various interfacial thermodynamic parameters have been evaluated. The experimental cmc's were analyzed with the pseudophase separation model, the regular solution theory, and the Maeda's approach. These approaches allowed us to determine the interaction parameter and composition in the mixed state. By using the static quenching method, the mean micellar aggregation numbers of pure and mixed micelles of HTAB + Mega-10 were obtained. It has been observed that the aggregation number of mixed micelles deviates negatively from the ideal behavior. The micropolarity of the micelle was monitored with pyrene fluorescence intensity ratio and found to be increase with the increase of ionic content. The polarization of fluorescence probe Rhodamine B was monitored at different mole fraction of cationic surfactants.  相似文献   

17.
The physicochemical properties of solutions of mixtures of cationic (cetiltrimethylammonum bromide) and nonionic (polyoxyethylene (20) sorbitan monooleate) surfactant, i.e., Tween-80, have been studied. The critical concentration of micellization, adsorption at the interface of a mixture of surfactants solution/air, and the minimum area occupied by a surfactant molecule have been determined. It was shown that, in the whole region of ratios between surfactants, sinergic effects are observed for both micellization and for the process of adsorption at the interface of a mixture of surfactants solution/air. The results obtained have been analyzed according to the regular solution theory (RST).  相似文献   

18.
The miscibility and interactions between components in mixed adsorbed films and micelles containing zwitterionic (dodecyl sulfobetaine--DSB) and cationic (dodecyltrimethylammonium bromide) or anionic (sodium dodecyl sulfonate) surfactant, respectively, have been investigated. The molecular interactions have been quantified by the values of the excess free energy of adsorption (DeltaGS,Exc) and micelle formation (DeltaGM,Exc). The obtained results indicate nonideal behavior of the investigated mixtures since the values of DeltaGS,Exc and DeltaGM,Exc) are negative. Moreover, it has been found that DSB interact more strongly with anionic surfactant as compared to cationic surfactant owing to different structure of mixed monolayers and micelles.  相似文献   

19.
Synergy and antagonism between sugar-based surfactants, a group of environmentally benign surfactants, and cationic surfactants and nonionic ethoxylated surfactants have been investigated in this study with solids which adsorbs only one or other when presented alone. Sugar-based n-dodecyl-beta-D-maltoside (DM) does not adsorb on silica by itself. However, in mixtures with cationic dodecyltrimethylammonium bromide (DTAB) and nonionic nonylphenol ethoxylated decyl ether (NP-10), DM adsorbs on silica through hydrophobic interactions. In contrast, although DM does adsorb on alumina, the presence of NP-10 reduces the adsorption of DM as well as that of the total surfactant adsorption. Such synergistic/antagonistic effects of sugar-based n-dodecyl-beta-D-maltoside (DM) in mixtures with other surfactants at solid/liquid interfaces were systematically investigated and some general rules on synergy/antagonism in mixed surfactant systems are identified. These results have implications for designing surfactant combinations for controlled adsorption or prevention of adsorption.  相似文献   

20.
The thermodynamics of micellar solubilization of acetophenone in mixtures of two cationic surfactants [benzyldimethyltetradecylammonium chloride +trimethyltetradecylammonium chloride] has been derived from calorimetric measurements at controlled solute activity. The partition coefficient between micelles and water as well as the standard enthalpy and entropy of transfer between micelles and water were calculated. The results were compared to the case of benzylalcohol in the same cationic mixtures. For acetophenone, the variation of all thermodynamic transfer functions with micellar composition may be described by the regular solution formalism. The same conclusion has been achieved for most polar solutes in various surfactant mixtures: favorable interaction between unlike surfactants induces an unfavorable micellar solubilization. Exceptions should be found with the cases where solute solubilization induces profound micellar changes. It seems to be the case with some alcohols in the cationic surfactant mixtures studied.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号