首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 159 毫秒
1.
《Optimization》2012,61(3):359-369
In this article, we present an algorithm to compute the minimum norm solution of the positive semidefinite linear complementarity problem. We show that its solution can be obtained using the alternative theorems and a convenient characterization of the solution set of a convex quadratic programming problem. This problem reduces to an unconstrained minimization problem with once differentiable convex objective function. We propose an extension of Newton's method for solving the unconstrained optimization problem. Computational results show that convergence to high accuracy often occurs in just a few iterations.  相似文献   

2.
In this paper, we show that an analogue of the classical conjugate gradient method converges linearly when applied to solving the problem of unconstrained minimization of a strictly convex quadratic spline. Since a strictly convex quadratic program with simple bound constraints can be reformulated as unconstrained minimization of a strictly convex quadratic spline, the conjugate gradient method is used to solve the unconstrained reformulation and find the solution of the original quadratic program. In particular, if the solution of the original quadratic program is nondegenerate, then the conjugate gradient method finds the solution in a finite number of iterations. This author's research is partially supported by the NASA/Langley Research Center under grant NCC-1-68 Supplement-15.  相似文献   

3.
本文通过构造一个无约束凸规划问题,建立了求超定线性方程组的极大极小解的一种近似算法,证明了算法的收剑性,并给出了初步的数值结果.  相似文献   

4.
逻辑回归是经典的分类方法,广泛应用于数据挖掘、机器学习和计算机视觉.现研究带有程。模约束的逻辑回归问题.这类问题广泛用于分类问题中的特征提取,且一般是NP-难的.为了求解这类问题,提出了嵌套BB(Barzilai and Borwein)算法的分裂增广拉格朗日算法(SALM-BB).该算法在迭代中交替地求解一个无约束凸优化问题和一个带程。模约束的二次优化问题.然后借助BB算法求解无约束凸优化问题.通过简单的等价变形直接得到带程。模约束二次优化问题的精确解,并且给出了算法的收敛性定理.最后通过数值实验来测试SALM-BB算法对稀疏逻辑回归问题的计算精确性.数据来源包括真实的UCI数据和模拟数据.数值实验表明,相对于一阶算法SLEP,SALM-BB能够得到更低的平均逻辑损失和错分率.  相似文献   

5.
This paper describes a new technique to find the minimum norm solution of a linear program. The main idea is to reformulate this problem as an unconstrained minimization problem with a convex and smooth objective function. The minimization of this objective function can be carried out by a Newton-type method which is shown to be globally convergent. Furthermore, under certain assumptions, this Newton-type method converges in a finite number of iterations to the minimum norm solution of the underlying linear program.  相似文献   

6.
Consider a linear programming problem in Karmarkar's standard form. By perturbing its linear objective function with an entropic barrier function and applying generalized geometric programming theory to it, Fang recently proposed an unconstrained convex programming approach to finding an epsilon-optimal solution. In this paper, we show that Fang's derivation of an unconstrained convex dual program can be greatly simplified by using only one simple geometric inequality. In addition, a system of nonlinear equations, which leads to a pair of primal and dual epsilon-optimal solutions, is proposed for further investigation.This work was partially supported by the North Carolina Supercomputing Center and a 1990 Cray Research Grant. The authors are indebted to Professors E. L. Peterson and R. Saigal for stimulating discussions.  相似文献   

7.
We shall find a multi-dimensional checkerboard copula of maximum entropy that matches an observed set of grade correlation coefficients. This problem is formulated as the maximization of a concave function on a convex polytope. Under mild constraint qualifications we show that a unique solution exists in the core of the feasible region. The theory of Fenchel duality is used to reformulate the problem as an unconstrained minimization which is well solved numerically using a Newton iteration. Finally, we discuss the numerical calculations for some hypothetical examples and describe how this work can be applied to the modelling and simulation of monthly rainfall.  相似文献   

8.
首先利用Lagrange对偶 ,将球约束凸二次规划问题转化为无约束优化问题 ,然后运用单纯形法求解无约束优化问题 ,从而获得原问题的最优解  相似文献   

9.
We consider the minimization problem with strictly convex, possibly nondifferentiable, separable cost and linear constraints. The dual of this problem is an unconstrained minimization problem with differentiable cost which is well suited for solution by parallel methods based on Gauss-Seidel relaxation. We show that these methods yield the optimal primal solution and, under additional assumptions, an optimal dual solution. To do this it is necessary to extend the classical Gauss-Seidel convergence results because the dual cost may not be strictly convex, and may have unbounded level sets. Work supported by the National Science Foundation under grant NSF-ECS-3217668.  相似文献   

10.
The Powell singular function was introduced 1962 by M.J.D. Powell as an unconstrained optimization problem. The function is also used as nonlinear least squares problem and system of nonlinear equations. The function is a classic test function included in collections of test problems in optimization as well as an example problem in text books. In the global optimization literature the function is stated as a difficult test case. The function is convex and the Hessian has a double singularity at the solution. In this paper we consider Newton’s method and methods in Halley class and we discuss the relationship between these methods on the Powell Singular Function. We show that these methods have global but linear rate of convergence. The function is in a subclass of unary functions and results for Newton’s method and methods in the Halley class can be extended to this class. Newton’s method is often made globally convergent by introducing a line search. We show that a full Newton step will satisfy many of standard step length rules and that exact line searches will yield slightly faster linear rate of convergence than Newton’s method. We illustrate some of these properties with numerical experiments.  相似文献   

11.
《Optimization》2012,61(2):265-288
In this article, we investigate the possibilities of accelerating the double smoothing (DS) technique when solving unconstrained nondifferentiable convex optimization problems. This approach relies on the regularization in two steps of the Fenchel dual problem associated with the problem to be solved into an optimization problem having a differentiable strongly convex objective function with Lipschitz continuous gradient. The doubly regularized dual problem is then solved via a fast gradient method. The aim of this article is to show how the properties of the functions in the objective of the primal problem influence the implementation of the DS approach and its rate of convergence. The theoretical results are applied to linear inverse problems by making use of different regularization functionals.  相似文献   

12.
In this paper, we consider a constrained nonconvex nonsmooth optimization, in which both objective and constraint functions may not be convex or smooth. With the help of the penalty function, we transform the problem into an unconstrained one and design an algorithm in proximal bundle method in which local convexification of the penalty function is utilized to deal with it. We show that, if adding a special constraint qualification, the penalty function can be an exact one, and the sequence generated by our algorithm converges to the KKT points of the problem under a moderate assumption. Finally, some illustrative examples are given to show the good performance of our algorithm.  相似文献   

13.
In this paper we investigate several solution algorithms for the convex fea- sibility problem(CFP)and the best approximation problem(BAP)respectively.The algorithms analyzed are already known before,but by adequately reformulating the CFP or the BAP we naturally deduce the general projection method for the CFP from well-known steepest decent method for unconstrained optimization and we also give a natural strategy of updating weight parameters.In the linear case we show the connec- tion of the two projection algorithms for the CFP and the BAP respectively.In addition, we establish the convergence of a method for the BAP under milder assumptions in the linear case.We also show by examples a Bauschke's conjecture is only partially correct.  相似文献   

14.
《Optimization》2012,61(3):235-243
In this paper, we derive an unconstrained convex programming approach to solving convex quadratic programming problems in standard form. Related duality theory is established by using two simple inequalities. An ?-optimal solution is obtained by solving an unconstrained dual convex program. A dual-to-primal conversion formula is also provided. Some preliminary computational results of using a curved search method is included  相似文献   

15.
Computational Optimization and Applications - In the present paper we propose to rewrite a nonsmooth problem subjected to convex constraints as an unconstrained problem. We show that this novel...  相似文献   

16.
在K-SVCR算法结构的基础上构造了新的模型.模型的特点是它的一阶最优化条件可以转化为一个线性互补问题,通过Lagrangian隐含数,可以将其进一步转化成一个强凸的无约束优化问题.利用共轭梯度技术对其进行求解,在有限步内得到分类超平面.最后在标准数据集进行了初步试验.试验结果显示了提出的算法在分类的精度和速度上都有明显提高.  相似文献   

17.
In this paper an exterior point polynomial time algorithm for convex quadratic programming problems is proposed. We convert a convex quadratic program into an unconstrained convex program problem with a self-concordant objective function. We show that, only with duality, the Path-following method is valid. The computational complexity analysis of the algorithm is given.  相似文献   

18.
Nonlinear Proximal Decomposition Method for Convex Programming   总被引:2,自引:0,他引:2  
In this paper, we propose a new decomposition method for solving convex programming problems with separable structure. The proposed method is based on the decomposition method proposed by Chen and Teboulle and the nonlinear proximal point algorithm using the Bregman function. An advantage of the proposed method is that, by a suitable choice of the Bregman function, each subproblem becomes essentially the unconstrained minimization of a finite-valued convex function. Under appropriate assumptions, the method is globally convergent to a solution of the problem.  相似文献   

19.
We show that the exact worst-case performance of fixed-step first-order methods for unconstrained optimization of smooth (possibly strongly) convex functions can be obtained by solving convex programs. Finding the worst-case performance of a black-box first-order method is formulated as an optimization problem over a set of smooth (strongly) convex functions and initial conditions. We develop closed-form necessary and sufficient conditions for smooth (strongly) convex interpolation, which provide a finite representation for those functions. This allows us to reformulate the worst-case performance estimation problem as an equivalent finite dimension-independent semidefinite optimization problem, whose exact solution can be recovered up to numerical precision. Optimal solutions to this performance estimation problem provide both worst-case performance bounds and explicit functions matching them, as our smooth (strongly) convex interpolation procedure is constructive. Our works build on those of Drori and Teboulle (Math Program 145(1–2):451–482, 2014) who introduced and solved relaxations of the performance estimation problem for smooth convex functions. We apply our approach to different fixed-step first-order methods with several performance criteria, including objective function accuracy and gradient norm. We conjecture several numerically supported worst-case bounds on the performance of the fixed-step gradient, fast gradient and optimized gradient methods, both in the smooth convex and the smooth strongly convex cases, and deduce tight estimates of the optimal step size for the gradient method.  相似文献   

20.
The problem of finding an x∈Rn such that Axb and x⩾0 arises in numerous contexts. We propose a new optimization method for solving this feasibility problem. After converting Axb into a system of equations by introducing a slack variable for each of the linear inequalities, the method imposes an entropy function over both the original and the slack variables as the objective function. The resulting entropy optimization problem is convex and has an unconstrained convex dual. If the system is consistent and has an interior solution, then a closed-form formula converts the dual optimal solution to the primal optimal solution, which is a feasible solution for the original system of linear inequalities. An algorithm based on the Newton method is proposed for solving the unconstrained dual problem. The proposed algorithm enjoys the global convergence property with a quadratic rate of local convergence. However, if the system is inconsistent, the unconstrained dual is shown to be unbounded. Moreover, the same algorithm can detect possible inconsistency of the system. Our numerical examples reveal the insensitivity of the number of iterations to both the size of the problem and the distance between the initial solution and the feasible region. The performance of the proposed algorithm is compared to that of the surrogate constraint algorithm recently developed by Yang and Murty. Our comparison indicates that the proposed method is particularly suitable when the number of constraints is larger than that of the variables and the initial solution is not close to the feasible region.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号