首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到19条相似文献,搜索用时 171 毫秒
1.
应用量子化学中高等级的多参考组态相互作用方法计算了环境科学中重要的分子离子BrCl^+的基态和低激发态的势能曲线与光谱常数,详细分析了旋轨耦合作用对电子结构和光谱性质的影响,确认了基态X^2П和低激发电子态的多组态特征,得到了基态X^2П的旋轨耦合分裂能1814cm^-1,与实验值2070cm^-1接近。预测了^2П(Ⅱ)态的旋轨耦合分裂能为766cm^-1。估算了3/2(Ⅲ)-X3/2和1/2(Ⅲ)-1/2(I)跃迂的偶极跃迁矩和Frank-Condon因子,讨论了它们的跃迁辐射寿命。  相似文献   

2.
在B3LYP/6-311++G~(**)水平上利用振动二阶微扰理论对2-吡啶酮,尿嘧啶及其5-取代物:5-溴-尿嘧啶、5-氯-尿嘧啶、5-氟-尿嘧啶、5-三氟甲基-尿嘧啶、5-腈-尿嘧啶、5-羟基-尿嘧啶(排斥式和氢键式)、胸腺嘧啶分子做了非谐性计算,研究这些分子在1 600~1 850 cm-1指纹区间振动模式的非谐性频率,非谐性常数与取代基影响的关系,并计算了费米共振峰,用振动激子模型模拟了耦合常数.和2-吡啶酮中的C=O和C=C伸缩振动相比,不同的5位取代基引起嘧啶分子中C=O跃迁偶极矩波动,取代基的电负性使C=C伸缩的跃迁偶极矩增加,并使得嘧啶分子中C=O和C=C伸缩振动之间的相互作用值改变显著,跃迁偶极耦合常数值和跃迁振动电子立方密度充分说明电子相互作用对模式间的耦合起着关键作用.  相似文献   

3.
采用密度泛函理论(DFT)B3LYP与cCsD方法研究了二重态和四重态势能面自旋禁阻反应VO(∑’)活化cH30H(1^A′)分子c—H,0—H键的微观机理.通过自旋一轨道耦合的计算讨论了势能面交叉点和可能的自旋翻转过程.在MEcP处,四重态和二重态问的旋轨耦合常数为131.14cm^-1.自旋多重度发生改变,从四重态系间穿越到二重态势能面形成中间体2^IM1,导致反应势能面的势垒明显降低.  相似文献   

4.
李文强  彭谦  谢育俊  张天  帅志刚 《化学学报》2016,74(11):902-909
光谱是探究分子间相互作用及发光机理的有效手段.本工作采用Frenkel激子模型和量子力学/分子力学(QM/MM)方法系统研究了一系列聚集诱导发光(AIE)体系和传统荧光(非AIE)体系晶态下的吸收、发射光谱.结果表明,分子内电声子耦合(λ)与分子间激子耦合(J)竞争决定了晶态聚集体的光谱特性.在室温下,当J/λ值大于约0.17时,有机分子聚集体光谱的激子耦合效应将表现明显.例如,对于面对面排列的H聚集体,只有考虑激子耦合效应的理论计算光谱才与其实验光谱吻合很好,即相较于单分子光谱的吸收蓝移、发射减弱并红移.对于AIE体系,因为其J/λ值均小于0.17,AIE聚集体光谱特征主要是由分子内电声子耦合所主导,激子耦合可以忽略不计.  相似文献   

5.
采用密度泛函理论B3LYP/6-31+G(d)方法,对实验合成的具有不同取代基团偶氮苯系列分子的电子性质和二阶非线性光学(NLO)效应进行计算分析.结果表明:偶氮(N—N)在分子中分别起到拉电子和传递电荷的作用.对8个分子进行比较发现,含有氨基的分子1b-4b的二阶NLO系数明显的高于含有羟基的分子1a-4a.各分子前线分子轨道跃迁对二阶NLO效应有主要贡献.  相似文献   

6.
用增强拉曼光谱和电势调节红外光谱探讨偶极-偶极相互作用时,吸附带强度变化比频率位移更为重要.因为其它因素,如吸附物位置不均匀,通过金属表面的诱导作用等也能引起频率的稍微位移,但这些因素均不能解释强度转移效应.分子间的振动相互作用主要通过它们的偶极场,吸附分子吸收峰强度的转移与它们的电子极化率的屏蔽作用密切相关,相关势近似(CPA,CoherentPotentialApproximation)已广泛用于讨论分子间的振动相互作用[1].本文用CPA方法计算了C(ZXZP’CN一、“CN丫All(100)体系的吸收光谱,并与吸附在粗化金电极上的…  相似文献   

7.
用含时的密度泛函(TD—DFT)方法研究了低带隙的中性和带电的交替共聚芴Green 1),该化合物是由烷染取代芴和(1,2,5-噻吩基-3,4-硫重氮基)喹喔啉噻吩(T—TDQ—T)单元交替重复组成,对他们的激发态特性用二维(2D)和三维(3D)实空间分析方法做了进一步分析.对于中性的Green 1,分别得到其带隙、键能、激子结合能和核驰豫能.用3D跃迁密度方法对中性和带电的Green 1的跃迁偶极矩进行比较可显示出跃迁偶极矩的取向和强度;用3D电荷差异密度方法显示出激发后的中性和带电的Green 1电荷重新分布和比较,用2D实空间分析方法(跃迁密度矩阵)来研究中性和带电的Green 1处于激发态时的电子空穴相干性.中性Green 1的激发态特性分别用TD—DFT和ZINDO两种方法进行了计算,比较得出电子-电子相互作用(在TD—DFT中)对激发态性质的重要影响.  相似文献   

8.
共轭聚合物与有机分子材料中的电子激发结构与过程决定了材料的光电功能:根据Kasha规则,低能级激发态的排序决定能否发光;最低激发态至基态的辐射跃迁与无辐射跃迁之间的竞争决定了发光效率,后者主要由非绝热耦合(声子作用)决定;电荷激发态载体的传输由电子分布与振动耦合或杂质和无序的散射弛豫过程决定.本文针对有机功能材料的发光性能,介绍两种理论方法的研究进展,即可用于计算共轭聚合物激发态结构的量子化学密度矩阵重整化群方法和计算发光效率的多模耦合无辐射跃迁速率方法.这些方法被应用于有机功能材料的性能预测和分子设计中.  相似文献   

9.
溶剂分子性质与界面内层微分电容变化特性   总被引:1,自引:0,他引:1  
苏文煅 《物理化学学报》1994,10(12):1066-1070
依照前文[1]设立的偶极取向分布模型,利用模拟的C1(σ)假想曲线阐析溶剂分子性质对电极/溶液界面内层微分电容的影响趋向,理想的C1(σ)拟合曲线表现出单峰或双峰的两种基本式样,而溶剂分子的极化,各态偶极取向能的差别以及偶极间的相互作用均将导致C1(σ)曲线明显形变.据此,可从分子的性质预测各类电极/溶液界面体系C1(σ)曲线变化特性.  相似文献   

10.
毛诗珍 《结构化学》1994,13(6):430-438
在分子力学能量优化项中加入由NMR实验得到的几何参数二面角(相应于~3J_(HH)耦合常数)及质子间距所构造的约束函数,使分子力学计算得到的能量极小点的分子构象,其耦合常数(~3J_(HH))及质子间距同NMR实验结果相符合。文中以(±)-3-(4'-甲苯基)-1-氮杂双环[2.2.2]-3-辛醇为例,采用自编的NMR参数约束的分子力学计算程序MM2NJ对其构象进行了计算。所得结果与X射线衍射法比较,有较好的一致性  相似文献   

11.
Optical physical properties of neutral and charged quinquethiophene monomer, and neutral and cationic pi-dimeric quinquethiophenes were investigated with density functional theory as well as the two dimensional (2D) site (transition density matrix) and three dimensional (3D) cube (transition density and charge difference density) representations, stimulated by the recent experimental report [T. Sakai et al., J. Am. Chem. Soc. 127, 8082 (2005)]. Transition density shows the orientation and strength of the transition dipole moment of neutral and charged quinquethiophene monomer, and charge difference density reveals the orientation and result of the charge transfer in neutral and charged quinquethiophene monomer. To study if coupling exciton and oscillation of electron-hole pair exist in neutral and cationic pi-dimeric quinquethiophenes, the coupling constants J (coupling exciton of electron-hole pair) and K (coupling oscillation of electron-hole pair) were introduced to the exciton coordinate and momentum operators, respectively, and the 2D and 3D analysis methods were further developed by extending our previous theoretical methods [M. T. Sun, J. Chem. Phys. 124, 054903 (2006)]. With the new developed 2D and 3D analysis methods, we investigated the excited state properties of neutral and cationic pi-dimeric quinquethiophenes, especially on the coupling exciton and oscillation of electron-hole pair between monomers. The 2D results show that there is neither coupling exciton (J=0) nor oscillation (K=0) of electron-hole pair in neutral pi-dimeric quinquethiophenes. For some excited states of cationic pi-dimeric quinquethiophenes, there is no coupling exciton (J=0), but there is coupling oscillation (K not equal0); while for some excited states, there are both coupling exciton and coupling oscillator simultaneously (J not equal0 and K not equal0). The strength of transition dipole moments of pi-dimeric quinquethiophenes were interpreted with 3D transition density, which reveals the orientations of their two subtransition dipole moments. The 3D charge transition density reveals the orientation and result of intermonomer and/or intramonomer charge transfer. The calculated results reveal that excited state properties of neutral pi-dimeric quinquethiophene are significantly different from those of the cationic pi-dimeric quinquethiophenes.  相似文献   

12.
An accurate and numerically efficient method for the calculation of intermolecular Coulomb couplings between charge densities of electronic states and between transition densities of electronic excitations is presented. The coupling of transition densities yields the F?rster type excitation energy transfer coupling, and from the charge density coupling, a shift in molecular excitation energies results. Starting from an ab initio calculation of the charge and transition densities, atomic partial charges are determined such as to fit the resulting electrostatic potentials of the different states and the transition. The different intermolecular couplings are then obtained from the Coulomb couplings between the respective atomic partial charges. The excitation energy transfer couplings obtained in the present TrEsp (transition charge from electrostatic potential) method are compared with couplings obtained from the simple point-dipole and extended dipole approximations and with those from the ab initio transition density cube method of Krüger, Scholes, and Fleming. The present method is of the same accuracy as the latter but computationally more efficient. The method is applied to study strongly coupled pigments in the light-harvesting complexes of green sulfur bacteria (FMO), purple bacteria (LH2), and higher plants (LHC-II) and the "special pairs" of bacterial reaction centers and reaction centers of photosystems I and II. For the pigment dimers in the antennae, it is found that the mutual orientation of the pigments is optimized for maximum excitonic coupling. A driving force for this orientation is the Coulomb coupling between ground-state charge densities. In the case of excitonic couplings in the "special pairs", a breakdown of the point-dipole approximation is found for all three reaction centers, but the extended dipole approximation works surprisingly well, if the extent of the transition dipole is chosen larger than assumed previously. For the "special pairs", a large shift in local transition energies is found due to charge density coupling.  相似文献   

13.
Excited states of the double-stranded DNA model (A)12.(T)12 were calculated in the framework of the Frenkel exciton theory. The off-diagonal elements of the exciton matrix were calculated using the transition densities and ideal dipole approximation associated with the lowest energy pipi* excitations of the individual nucleobases as obtained from time-dependent density functional theory calculations. The values of the coupling calculated with the transition density cubes (TDC) and ideal dipole approximation (IDA) methods were found to be significantly different for the small interchromophore distances. It was shown that the IDA overestimates the coupling significantly. The effects of structural fluctuations of the DNA chain on the magnitude of dipolar coupling were also found to be very significant. The difference between the maximum and minimum values was as large as 1000 and 300 cm(-1) for the IDA and TDC methods, respectively. To account for these effects, the properties of the excited states were averaged over a large number of conformations obtained from the molecular dynamics simulations. Our calculations using the TDC method indicate that the absorption of the UV light creates exciton states carrying the majority of the oscillator strength that are delocalized over at least six DNA bases. Upon relaxation, the excitation states localize over at least four contiguous bases.  相似文献   

14.
The diimide perylene motif exhibits a dramatic intensity reversal between the 0 --> 0 and 0 --> 1 vibronic bands upon pi-pi stacking; this distinct spectral property has previously been used to measure folding dynamics in covalently bound oligomers and synthetic biological hybrid foldamers. It is also used as a tool to assess organization of the pi-stacking, indicating the presence of H- or J-aggregation. The zeroth-order exciton model, often used to describe the optical properties of chromophoric aggregates, is solely a transition dipole coupling scheme, which ignores the explicit electronic structure of the system as well as vibrational coupling to the electronic transition. We have therefore examined the optical properties of gas-phase perylene tetracarboxylic diimide (PTCDI) and its chromophoric dimer as a function of conformation to relate the excited-state distributions predicted by exciton theory with that of time-dependent density functional theory (TDDFT). Using ground- and excited-state geometries, the Franck-Condon (FC) factors for the lowest energy molecular nature electronic transition have been calculated and the origin of the intensity reversal of 0 --> 0 and 0 --> 1 vibronic bands has been proposed.  相似文献   

15.
In the antenna system of photosynthetic bacteria, pigments form circular aggregates whose excitations are excitons with quantum-mechanical coherence extending over many pigments. These excitons play crucial roles in light harvesting, storage, and excitation-energy transfer (EET). EET takes place rapidly to and/or from optically forbidden exciton states, without total transition dipole, within the antenna system and to the reaction center. Such EETs cannot be rationalized by F?rster's formula, the traditional theory on EET, because it allows EET only between optically allowed states. The coherence in the excitons seems to prohibit rapid EET on this formula. The bacteria overcome this difficulty by circumventing the coherence, using the effects of the physical size of an aggregate that is larger than the shortest distance between pigments in the donor and pigments in the acceptor. The shortest-distance pair therein cannot detect whether the aggregate has a nonvanishing total transition dipole or not, since the pair see effectively only the transition dipole on the other pigment in themselves. The transition dipole facilitates rapid EET even to and/or from optically forbidden exciton states. Such EETs have enabled us to develop a general formula for the rate constant of EET. This is a formula in the weak-interaction limit, and so is F?rster's formula, but it correctly takes into account the above size effect.  相似文献   

16.
The physical event of the umbrella inversion of ammonia has been studied in detail by application of the formalisms of frontier orbital theory, the density functional theory, the localized molecular orbital method, and the energy partitioning analysis. An intuitive structure for the transition state and dynamics of the physical process of structural reorganization prior to inversion have been suggested. The computation starts with the CNDO/2 equilibrium geometry, and thereafter the cycle proceeds through all the conformations of ammonia obtained by varying the ∠HNH angle in steps of 2° from its equilibrium value up to the transition state. The geometry of each conformation is optimized with respect to the length of the N–H bond. The glimpses of the charge density reorganization during the movement of the molecule from equilibrium conformation toward the transition state is computed in terms of dipole moment and the quantum mechanical hybridizations of bond pair and lone pair of N atom through the localized molecular orbitals (LMOs) of all the conformations. Results demonstrate that as the geometry of the molecule begins to evolve through the reorganization of structure, the N–H bond length and the dipole moment begin to decrease, and the trend continues up to the transition state. The dipole moment of the molecule at the suggested transition state is zero. The computed nature of quantum mechanical hybridization of bond pair and lone pair of the N atom as a function of reaction coordinates of the ∠HNH angles reveals that the percentage of s character of the lone pair hybrid decreases and that of the bond pair hybrid forming the σ(N–H) bond increases during the process of geometry reorganization from the equilibrium shape to the transition state. The rationale of the zero dipole moment of the transition state for inversion is not straightforward from its point‐group symmetry, but is self‐evident from its electronic structure drawn in terms of LMOs. The electronic structure of the transition state, which may be drawn in terms of the LMOs, seems to closely reproduce its suggested intuitive structure. The pattern of variation of dipole moment and nature of the changes of the percentage of the s character in the lone pair hybrid creating dipole with the evolution of geometry during the physical process of structural reorganization for the inversion are found to be nicely correlated according to the suggestion of Coulson. The profiles of the increasing strength of the N–H bond and the increasing percentage of s character of the bond pair hybrid of N atom forming this bond as a function of reaction coordinates are also found to be correlated in accordance with the suggestion of Coulson. The profile of global hardness as a function of reaction coordinate seems to demonstrate that the dynamics of the evolution of the molecular structure from equilibrium shape to the transition state following the course of suggested mode of structural reorganization conforms to the principle of maximum hardness (PMH). The profiles of parameters like the energies of highest occupied and lowest unoccupied molecular orbital (HOMO and LUMO), the gap in energy between HOMO and LUMO, the global hardness, the global softness, and chemical potential as a function of reaction coodinates of a continuous structural evolution from equilibrium shape to the transition state mimic the potential energy diagram of the total energy. Both the frontier orbital parameters and the density functional quantities are found to be equally effective and reliable to monitor the process of necessary structural reorganization prior to the inversion of mofecules. An energy partitioning analysis demonstrates that the origin of barrier has no unique single source rather as many as four mutually exclusive but interacting one‐ and two‐center energy terms within the molecule entail the origin and the height of the barrier. From a close analysis of the results, it seems highly probable that the necessary structural reorganization prior to umbrella inversion of ammonia most realistically occurs following the course of normal modes of vibration of the molecule. © 2000 John Wiley & Sons, Inc. Int J Quant Chem 80: 1–26, 2000  相似文献   

17.
The exciton band structure of the 33000 cm−1 transition of fluorene has been calculated in the dipole approximation. It is shown that the interac  相似文献   

18.
19.
We present a fundamentally new approach for measuring the transition dipole moment of molecular transitions, which combines the benefits of quantum interference effects, such as the Autler-Townes splitting, with the familiar R-centroid approximation. This method is superior to other experimental methods for determining the absolute value of the R-dependent electronic transition dipole moment function mu(e)(R), since it requires only an accurate measurement of the coupling laser electric field amplitude and the determination of the Rabi frequency from an Autler-Townes split fluorescence spectral line. We illustrate this method by measuring the transition dipole moment matrix element for the Na2 A 1Sigma(u)+ (v' = 25, J' = 20e)-X 1Sigma(g)+ (v" = 38, J" = 21e) rovibronic transition and compare our experimental results with our ab initio calculations. We have compared the three-level (cascade) and four-level (extended Lambda) excitation schemes and found that the latter is preferable in this case for two reasons. First, this excitation scheme takes advantage of the fact that the coupling field lower level is outside the thermal population range. As a result vibrational levels with larger wave function amplitudes at the outer turning point of vibration lead to larger transition dipole moment matrix elements and Rabi frequencies than those accessible from the equilibrium internuclear distance of the thermal population distribution. Second, the coupling laser can be "tuned" to different rovibronic transitions in order to determine the internuclear distance dependence of the electronic transition dipole moment function in the region of the R-centroid of each coupling laser transition. Thus the internuclear distance dependence of the transition moment function mu(e)(R) can be determined at several very different values of the R centroid. The measured transition dipole moment matrix element for the Na2 A 1Sigma(u)+ (v' = 25, J' = 20e)-X 1Sigma(g)+ (v" = 38, J" = 21e) transition is 5.5+/-0.2 D compared to our ab initio value of 5.9 D. By using the R-centroid approximation for this transition the corresponding experimental electronic transition dipole moment is 9.72 D at Rc = 4.81 A, in good agreement with our ab initio value of 10.55 D.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号