首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
In this paper, a 3D algorithm for the treatment of radiative heat transfer in emitting, absorbing, and scattering media is developed. The numerical approach is based on the utilization of the unstructured control volume finite element method (CVFEM) which, to the knowledge of the authors, is applied for the first time to simulate radiative heat transfer in participated media confined in 3D complex geometries. This simulation makes simultaneously the use of the merits of both the finite element method and the control volume method. Unstructured 3D triangular element grids are employed in the spatial discretization and azimuthal discretization strategy is employed in the angular discretization. The general discretization equation is presented and solved by the conditioned conjugate gradient squared method (CCGS). In order to test the efficiency of the developed method, several 3D complex geometries including a hexahedral enclosure, a 3D equilateral triangular enclosure, a 3D L-shaped enclosure and 3D elliptical enclosure are examined. The results are compared with the exact solutions or published references and the accuracy obtained in each case is shown to be highly satisfactory. Moreover, this approach required a less CPU time and iterations compared with those of even parity formulation of the discrete ordinates method.  相似文献   

2.
Using Monte Carlo method, the paper investigates the radiative heat transfer in participating media. Based on the radiative exchange factor, an uncertainty analysis of Monte Carlo method is undertaken and the corresponding mathematical expressions are deduced to predict its accuracy. Furthermore, randomness properties of pseudorandom number generators are investigated, and a model to test radiation symmetry is adopted to validate the performance of some generators. The paper studies the effects of energy bundle numbers, discretization schemes, emission location, optical thicknesses, wall emissivity and CPU time on the numerical accuracy. In addition, the simulation results are proved to give a reference for using Monte Carlo method, which is applicable for calculation of the radiative exchange factor.  相似文献   

3.
半透明梯度折射率介质内辐射熵传递方程及其数值模拟   总被引:1,自引:0,他引:1  
刘林华 《计算物理》2009,26(2):267-274
在非相干辐射条件下,基于Planck光谱辐射熵强度定义,导出半透明梯度折射率介质内光谱辐射熵传递方程,以及局部辐射熵产率理论表达式.基于离散坐标法对辐射熵传递方程进行数值求解.以一维半透明梯度介质平板为例,对辐射熵方程及其算法进行验证.平板整体无因次辐射熵产的计算结果与宏观热力学定律的结果一致.  相似文献   

4.
Simplifications of the model for nongray radiative heat transfer analysis in participating media comprised of polydisperse water droplets are presented. Databases of the radiative properties for a water droplet over a wide range of wavelengths and diameters are constructed using rigorous Mie theory. The accuracy of the radiative properties obtained from the database interpolation is validated by comparing them with those obtained from the Mie calculations. The radiative properties of polydisperse water droplets are compared with those of monodisperse water droplets with equivalent mean diameters. Nongray radiative heat transfer in the anisotropic scattering fog layer, including direct and diffuse solar irradiations and infrared sky flux, is analyzed using REM2. The radiative heat fluxes within the fog layer containing polydisperse water droplets are compared with those in the layer containing monodisperse water droplets. Through numerical simulation of the radiative heat transfer, polydisperse water droplets can be approximated by using the Sauter diameter, a technique that can be useful in several research fields, such as engineering and atmospheric science. Although this approximation is valid in the case of pure radiative transfer problems, the Sauter diameter is reconfirmed to be the appropriate diameter for approximating problems in radiative heat transfer, although volume-length mean diameter shows better accordance in some cases. The CPU time for nongray radiative heat transfer analysis with a fog model is evaluated. It is proved that the CPU time is decreased by using the databases and the approximation method for polydisperse particulate media.  相似文献   

5.
In the present study, a three-dimensional algorithm for the treatment of radiative heat transfer in emitting, absorbing and scattering media is developed. The approach is based on the utilization of control volume finite element method (CVFEM) which, to the knowledge of the authors, is applied at the first time to 3D radiative heat transfer in participating media. The accuracy of the present algorithm is tested by comparing its predictions to other published works. Comparisons show that CVFEM produces good results. Moreover, this approach permits compatibility with other numerical methods used for computational fluids mechanics problems.  相似文献   

6.
Under various interface reflecting modes, different transient thermal responses will occur in the media. Combined radiative-conductive heat transfer is investigated within a participating, anisotropic scattering gray planar slab. The two interfaces of the slab are considered to be diffuse and semitransparent. Using the ray tracing method, an anisotropic scattering radiative transfer model for diffuse reflection at boundaries is set up, and with the help of direct radiative transfer coefficients, corresponding radiative transfer coefficients (RTCs) are deduced. RTCs are used to calculate the radiative source term in energy equation. Transient energy equation is solved by the full implicit control-volume method under the external radiative-convective boundary conditions. The influences of two reflecting modes including both specular reflection and diffuse reflection on transient temperature fields and steady heat flux are examined. According to numerical results obtained in this paper, it is found that there exits great difference in thermal behavior between slabs with diffuse interfaces and that with specular interfaces for slabs with big refractive index.  相似文献   

7.
A numerical approach for the treatment of radiative heat transfer in any irregularly-shaped axisymmetric enclosure filled with absorbing, emitting and scattering gray media is developed. Radiative transfer equation (RTE) is formulated for a general axisymmetric geometrical configurations, and the discretized equation is conducted using an unstructured meshes, generated by an appropriate computer algorithm, and the control volume finite element method which frequently adopted in CFD problems. A computer procedure has been done to solve the discretized RTE and to examine the accuracy and the computational efficiency of the proposed numerical approach. By using this computer algorithm, five test cases, a cylindrical enclosure with absorbing and emitting medium, a diffuser shaped axisymmetric enclosure, a finite axisymmetric cylindrical enclosure with a curved wall, a furnace with axially varying medium temperature and a rocket nozzle, are treated and the obtained results agree very well with other published works. Furthermore, the developed computer procedure has an accurate CPU time and it can be coupled easily with CFD codes.  相似文献   

8.
The current study addresses the mathematical modeling aspects of coupled conductive and radiative heat transfer in the presence of absorbing, emitting and isotropic scattering gray medium within two-dimensional square enclosure. A blended method where the concepts of modified differential approximation employed by combining discrete ordinate method and spherical harmonics method, has been developed for modeling the radiative transport equation. The gray participating medium is bounded by isothermal walls of two-dimensional enclosure which are considered to be opaque, diffuse and gray. The effect of various influencing parameters i.e., radiation-conduction parameter, surface emissivity, single scattering albedo and optical thickness has been illustrated. The adaptability of the present method has also been addressed.  相似文献   

9.
辐射传递蒙特卡洛法精度分析及数值试验   总被引:3,自引:1,他引:2  
本文建立了蒙特卡洛法模拟散射参与性介质内辐射传递计算模型。对蒙特卡洛法的计算精度及运行时间进行了较为详细的分析,提出了几种判断计算精度的方法。同时,借助蒙特卡洛法模拟辐射传递过程,进行数值“辐射实验”。利用该“实验结果”进行了物性反问题研究。在已知光学厚度的前提下,得到散射反照率与后半球辐射热流之间的单值函数关系。  相似文献   

10.
An efficient numerical inverse radiation analysis based on the backward Monte Carlo (BMC) method is presented to determine the three-dimensional (3-D) temperature distribution in a large rectangular enclosure containing the participating medium, using radiative intensities in the visible range received by charge-coupled device (CCD) cameras. For large radiative sources and small detectors, when the radiation onto a small spot and onto a small direction cone is desired, the BMC method is more efficient than the forward Monte Carlo (FMC) method. Because the temperature reconstruction from the measured radiative intensities is an ill-posed inverse problem, least-square QR decomposition (LSQR) method is introduced to determine the meaningful temperature distribution. In order to gain insight into the effects on the accuracy of temperature distribution reconstruction, the detailed analyses are made using numerical simulations. The results show that the temperature distribution can be reconstructed accurately for the exact and noisy data.  相似文献   

11.
矩形封闭腔内非饱和多孔介质的传热传质特性研究   总被引:1,自引:0,他引:1  
本文建立了矩形封闭腔内非饱和多孔介质的二维传热传质数理模型,并对R113的蒸发相交进行了数值模拟。根据计算结果着重讨论了流体瑞利数Ra,介质达西数Da以及腔体冷热端温差△T的变化对其传热传质特性的影响,得出一些有用的可指导工程实践的结论。  相似文献   

12.
A least-squares collocation meshless method is employed for solving the radiative heat transfer in absorbing, emitting and scattering media. The least-squares collocation meshless method for radiative transfer is based on the discrete ordinates equation. A moving least-squares approximation is applied to construct the trial functions. Except for the collocation points which are used to construct the trial functions, a number of auxiliary points are also adopted to form the total residuals of the problem. The least-squares technique is used to obtain the solution of the problem by minimizing the summation of residuals of all collocation and auxiliary points. Three numerical examples are studied to illustrate the performance of this new solution method. The numerical results are compared with the other benchmark approximate solutions. By comparison, the results show that the least-squares collocation meshless method is efficient, accurate and stable, and can be used for solving the radiative heat transfer in absorbing, emitting and scattering media.  相似文献   

13.
This paper presents the computation of radiation heat transfer in a cylindrical enclosure in which the dimensions, the chemical species concentrations and the temperature fields make a realistic representation of an actual combustion chamber. Two gas models are applied and compared: the absorption-line blackbody distribution function (ALBDF), and the standard weighted-sum-of-gray-gases (WSGG) based on coefficients and correlations that are widely used in engineering. While the standard WSGG is restricted to the assumption of homogeneous gas mixture, the ALBDF can be applied to both homogeneous and non-homogeneous media. For the two gas models, the radiative exchanges are computed with the aid of the Monte Carlo method. The results show considerable discrepancies between the WSGG and the ALBDF models for the homogeneous medium. In addition, the importance of considering the non-homogeneity of the medium for an accurate computation of the radiative heat transfer is shown.  相似文献   

14.
随着超短脉冲激光的快速发展,吸收散射性介质内的瞬态辐射传输引起了人们的广泛关注.本文基于离散坐标法和最小二乘有限元法(LSFEM),提出了模拟多维吸收散射性介质内瞬态辐射传输的数值模型.该模型有效地克服了在标准Galerkin有限元法(GFEM)中发生的伪振荡现象,在时间步长较大的情况下仍然可以得到光滑无振荡的解.而且,最小二乘法产生的求解系数矩阵是对称正定的,与GFEM中的系数矩阵相比,仅需要存储一半的非零系数,可以应用许多高效的迭代求解方法进行求解.为了检验模型,本文研究了一维吸收散射性介质内瞬态辐射传输问题,其结果与蒙特卡洛法(MCM)和积分模型法(IE)的结果进行了比较,结果证实:本文的方法可以精确、高效地模拟参与性介质内的瞬态辐射传输.  相似文献   

15.
Two-dimensional temperature and heat flux distributions are calculated for an absorbing-emitting gray medium at radiative equilibrium in a rectangular enclosure. The bounding walls are gray and diffuse with arbitrary surface temperature distributions, and heat generation may take place inside the medium. As a first approximation, the problem is solved for optically thick systems (differential approximation). These results are subsequently improved by the introduction of a number of geometrical parameters to yield good accuracy for all optical thicknesses. As examples, two cases are discussed in detail: (1) uniform heat generation in a black enclosure and (2) an enclosure with one gray surface at constant temperature. Comparison with some numerical solutions generated by Hottel's zonal method shows excellent agreement.  相似文献   

16.
In this paper, advanced wall-modeled large eddy simulation (LES) techniques are used to predict conjugate heat transfer processes in turbulent channel flow. Thereby, the thermal energy transfer process involves an interaction of conduction within a solid body and convection from the solid surface by fluid motion. The approaches comprise a two-layer RANS–LES approach (zonal LES), a hybrid RANS–LES representative, the so-called improved delayed detached eddy simulation method (IDDES) and a non-equilibrium wall function model (WFLES), respectively. The results obtained are evaluated in comparison with direct numerical simulation (DNS) data and wall-resolved LES including thermal cases of large Reynolds numbers where DNS data are not available in the literature. It turns out that zonal LES, IDDES and WFLES are able to predict heat and fluid flow statistics along with wall shear stresses and Nusselt numbers accurately and that are physically consistent. Furthermore, it is found that IDDES, WFLES and zonal LES exhibit significantly lower computational costs than wall-resolved LES. Since IDDES and especially zonal LES require considerable extra work to generate numerical grids, this study indicates in particular that WFLES offers a promising near-wall modeling strategy for LES of conjugated heat transfer problems. Finally, an entropy generation analysis using the various models showed that the viscous entropy production is zero inside the solid region, peaks at the solid–fluid interface and decreases rapidly with increasing wall distance within the fluid region. Except inside the solid region, where steep temperature gradients lead to high (thermal) entropy generation rates, a similar behavior is monitored for the entropy generation by heat transfer process.  相似文献   

17.
The analysis under the second law of thermodynamics is the gateway for optimisation in thermal equipments and systems. Through entropy minimisation techniques it is possible to increase the efficiency and overall performance of all kinds of thermal systems. Radiation, being the dominant mechanism of heat transfer in high-temperature systems, plays a determinant role in entropy generation within such equipments. Turbulence is also known to be a major player in the phenomenon of entropy generation. Therefore, turbulence-radiation interaction is expected to have a determinant effect on entropy generation. However, this is a subject that has not been dealt with so far, at least to the extent of the authors’ knowledge. The present work attempts to fill that void, by studying the effect of turbulence-radiation interaction on entropy generation. All calculations are approached in such a way as to make them totally compatible with standard engineering methods for radiative heat transfer, namely the discrete ordinates method. It was found that turbulence-radiation interaction does not significantly change the spatial pattern of entropy generation, or heat transfer, but does change significantly their magnitude, in a way approximately proportional to the square of the intensity of turbulence.  相似文献   

18.
An efficient and robust method based on the complex-variable-differentiation method (CVDM) is proposed to reconstruct the distribution of optical parameters in two-dimensional participating media. An upwind-difference discrete-ordinate formulation of the time-domain radiative transfer equation is well established and used as forward model. The regularization term using generalized Gaussian Markov random field model is added in the objective function to overcome the ill-posed nature of the radiative inverse problem. The multi-start conjugate gradient method was utilized to accelerate the convergence speed of the inverse procedure. To obtain an accurate result and avoid the cumbersome formula of adjoint differentiation model, the CVDM was employed to calculate the gradient of objective function with respect to the optical parameters. All the simulation results show that the CVDM is efficient and robust for the reconstruction of optical parameters.  相似文献   

19.
This paper presents a new numerical scheme of the discrete ordinates method for the solution of axisymmetric radiative transfer problems in irregular domains filled by media with opaque and transparent diffuse and specular (Fresnel) boundaries and interfaces. New test problems of radiative transfer, which describe radiative transfer in domains with Fresnel interfaces, are proposed in this paper. These problems admit analytic solutions and can be used as benchmark ones. The proposed scheme is applied to the solution of the problems. Numerical results show that the presence of Fresnel interfaces leads to an appreciably larger error in numerical solution. This is connected with the “discontinuity” of the Fresnel reflectivity, which, through numerical diffusion, leads to the distortion of numerical solution. Modification of the scheme allows to reduce the numerical error.  相似文献   

20.
This paper presents the modified method of characteristics for simulating multidimensional transient radiative transfer in emitting, absorbing and scattering media. The method is based on the method of characteristics that follows photons along their pathlines. It makes use of a fixed set of points, and unlike the conventional method of characteristics, it follows the photons backward in space. Test problems involving diffuse irradiation in 1-D and 3-D participating media and collimated irradiation in 1-D participating media were considered. The results show good agreement with analytical and numerical solutions reported in literature. The scheme is fast and was able to capture the sharp discontinuities associated with the propagation of a radiation front in transient radiation transport.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号