首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
楚化强  冯艳  曹文健  任飞  顾明言 《物理学报》2017,66(9):94207-094207
在O_2/CO_2气氛下,参与性介质的非灰气体辐射特性表现出不同于空气气氛下的特性,因此,非灰气体辐射模型的选择和应用在换热过程中将变得十分重要.基于统计窄谱带模型,本文综合评估近年发展应用较广的灰气体加权和(WSGG)模型.结果表明,几种WSGG模型的预测值总体趋势正确,但仍存在着一定的差别.对于发射率,Dorigon等(2013 Int.J.Heat Mass Transfer 64 863)和Bordbar等(2014 Combust.Flame 161 2435)的WSGG模型与基准模型符合较好,相对误差小于20%.与离散坐标法结合,本文求解了PH_2O/PCO_2=1,2时的一维平行平板间辐射换热问题.结果显示,由Dorigon等和Bordbar等的WSGG模型得到的辐射热源和热流密度分布的相对误差均较小(10%左右).Johansson等(2011 Combust.Flame 158893)和Bordbar等的WSGG模型具有更广的适用范围.  相似文献   

2.
The discrete ordinates and the discrete transfer methods are applied to the numerical simulation of radiative heat transfer from non-gray gases in three-dimensional enclosures. Several gas radiative property models are used, namely the correlated k-distribution (CK), the spectral line-based weighted-sum-of-gray-gases (SLW) and the weighted-sum-of-gray-gases (WSGG) methods. The results are compared with recently published accurate calculations based on the statistical narrow band model. The WSGG model is computationally efficient, but often yields relatively large errors. It should be used only if moderate accuracy is sufficient. The SLW model is the best alternative regarding the compromise between accuracy and numerical efficiency. However, an optimization of the coefficients of the model is essential to reduce the computational requirements, especially in the case of gas mixtures. The CK model is the most accurate of the methods evaluated here, but too time consuming for engineering applications, although recent developments may partly overcome this shortcoming.  相似文献   

3.
The discrete ordinates interpolation method (DOIM) is applied to three groups of problems of radiative heat transfer in three-dimensional rectangular enclosures containing non-gray or scattering medium. The original DOIM is first extended to a gray gas model using a new geometric interpolation scheme. It is applied to participating media for different scattering phase functions and optical thicknesses. For the non-gray gas model, the DOIM coupled with the narrow band-based weighted-sum-of-gray-gases (WSGG) model is developed. A few test problems with real gases such as pure H2O and a mixture of CO2, H2O and N2 are taken. The wall heat flux is calculated and compared with the exact solutions or reference values. All results of test problems are found to be reliable in this study. The DOIM closely reproduces the Monte Carlo reference solutions for different scattering phase functions and optical thicknesses. The non-gray gas results are compared with reference calculations based on the statistical narrow band model and they also show good agreements. The DOIM shows a remarkable merit in the computation time and the grid compatibility, to prove its usefulness for engineering applications.  相似文献   

4.
This paper describes a theoretical study to investigate the heat transfer characteristics of porous radiant burners (PRBs). In the present work, a 2-D rectangular model is used to solve the governing equations for porous medium and gas flow before the premixed flame to the exhaust gas. The gas and the solid phases are considered in non-local thermal equilibrium and combustion in the porous medium is modeled by considering a non-uniform heat generation zone. The homogeneous porous media, in addition to its convective heat exchange with the gas, may absorb, emit and scatter thermal radiation. The radiation effect in the gas flow is neglected but the conductive heat transfer is taken into account. In order to analyze the thermal characteristics of porous burners, the coupled energy equations for the gas and porous medium in steady condition are solved numerically and the discrete ordinates method (DOM) is used to obtain the distribution of radiative heat flux in the porous media. Finally, the effects of various parameters on the performance of porous radiant burners are examined. The present results are compared with some reported theoretical and experimental results by other investigators and good agreement is found.  相似文献   

5.
Radiative heat transfer plays an important role in the chemical reactions in the combustor. The widely used WSGG model proposed by Smith is established for normal pressure, which shows inevitable computational errors when dealing with radiative heat transfer problems at reduced or elevated pressures. In this paper, an improved global model is established to calculate the radiant energy exchanges between combustion gases and combustor chamber walls. Compared with the Smith model, the new model shows better performance in a wide range of pressure regions. The model accuracy is examined by computing the emissivity, radiative heat flux as well as the radiative source of H2O–CO2 gas mixtures at different pressure values. Finally, the radiative heat transfer inside a 3D TBCC(turbine-based combined cycle) engine exhaust system where strong gradients of pressure and temperature exist, is also addressed. The computational results show that the developed model provides approximate results at much less computational costs than the high-precision MSMGFSK-c8 model, which makes it competitive in complicated combustion systems.  相似文献   

6.
The radiative heat transfer problem is solved for 3D complex industrial boiler with five baffles containing a mixture of carbon dioxide and water vapor for non-uniform temperature fields. A numerical formulation using the FTn finite volume method coupled with the bounded high-order resolution CLAM scheme, the blocked-off-region procedure and the narrow-band based weighted-sum-of-gray-gases (WSGG) [Kim OJ, Song T-H. Data base of WSGGM-based spectral model for radiation properties of combustion products, JQSRT 2000; 64: 379-94] model is adapted. The effect of soot volumetric fraction, particle temperature and uniform particle concentration on the radiative heat flux and radiative heat source is investigated and discussed. Also the advantages, in non-gray media, of the FTnFVM compared to the classical FVM are highlighted.  相似文献   

7.
A comparison of several radiative heat transfer models is made for a stagnation-point diffusion flame at low stretch rate, with CO2 and H2O as the participating media. Computed results of the radiative source distribution for wideband, narrowband and SLWSGG show reasonable agreement with each other. Results from the optically thin and grey gas models with Planck mean absorption coefficient are shown to underestimate the self-absorption and overestimate the emission substantially for the low stretch flame. The relative computation times of using the various radiation models are also given.  相似文献   

8.
The coupled conductive radiative transfer problem in two homogeneous layers slab of anisotropic scattering with specularly reflecting boundaries has been considered. A Galerkin-iterative technique is used to solve the coupled conductive radiative heat equations in integral forms for the two layers. Numerical results are obtained for the temperature, the conductive, radiative and the total heat fluxes for the two homogeneous layers with isotropic and anisotropic scattering. The calculations are also carried out for homogeneous plane parallel medium with anisotropic scattering which show good agreement with the published calculations.  相似文献   

9.
This paper deals with heat transfer in non-grey semitransparent two-dimensional sample. Considering an homogeneous purely absorbing medium, we calculated the temperature field and heat fluxes of a material irradiated under a specific direction. Coupled radiative and conductive heat transfer were considered. The radiative heat transfer equation (RTE) was solved using a S8 quadrature and a discrete ordinate method. Reflection and absorption coefficients of the medium were calculated with the silica optical properties. The conduction inside the medium was linked to the RTE through the energy conservation. Validation of the model and two original cases are also presented.  相似文献   

10.
To avoid the complicated and time-consuming computation of curved ray trajectories, a discontinuous finite element method based on discrete ordinate equation is extended to solve the radiative transfer problem in a multi-dimensional semitransparent graded index medium. Two cases of radiative heat transfer in two-dimensional rectangular gray semitransparent graded index medium enclosed by opaque boundary are examined to verify this discontinuous finite element method. Special layered and radial graded index distributions are considered. The predicted dimensionless net radiative heat fluxes and dimensionless temperature distributions are determined by the discontinuous finite element method and compared with the results obtained by the curved Monte Carlo method in references. The results show that the discontinuous finite element method has a good accuracy in solving the multi-dimensional radiative transfer problem in a semitransparent graded index medium.  相似文献   

11.
To avoid the complicated and time-consuming computation of curved ray trajectories, a least-squares finite element method based on discrete ordinate equation is extended to solve the radiative transfer problem in a multi-dimensional semitransparent graded index medium. Four cases of radiative heat transfer are examined to verify this least-squares finite element method. Linear and nonlinear graded index are considered. The predicted dimensionless net radiative heat fluxes are determined by the least-squares finite element method and compared with the results obtained by other methods. The results show that the least-squares finite element method is stable and has a good accuracy in solving the multi-dimensional radiative transfer problem in a semitransparent graded index medium, while the Galerkin finite element method sometimes suffers from nonphysical oscillations.  相似文献   

12.
气粒混合物辐射问题具有全场性、非灰性、耦合性等特点,准确预估高温燃气/粒子非灰辐射特性是非常重要的。本文将合并宽窄谱带K分布模础(CWNBCK)与离散坐标法(DOM)结合,开展了非灰气粒混合物辐射换热问题的模拟工作,分别验证了一维和三维情况下应用该模型的准确性,给出不同工况下的热流源项、壁面热流或辐射热流等。结果表明:该模型能够给出与SNB模型精度基本相同的结果,考虑其计算效率的提高,可以在工程实际中应用该模型计算非灰气粒混合物辐射换热。  相似文献   

13.
The doubling method is a fast and exact procedure for calculating radiative transfer in a homogeneous, scattering, plane-parallel medium. It can also be used in the adding mode for an inhomogeneous medium that is approximated by a finite number of homogeneous sublayers with different radiative properties. The errors caused by this approximation are analyzed in this paper through comparison with invariant imbedding calculations that are slow but exact for inhomogeneous media. A procedure is developed so errors can be estimated and controlled when using the faster adding/doubling calculations.  相似文献   

14.
This paper presents a heat transfer model to calculate the temperature field in moving glass rods heated by a CO2 laser. Conduction and radiation heat transfer in radial and axial directions are taken into account in the current model. The Rosseland diffusion approximation is incorporated to analyze the radiation heat transfer in the glass rod. A two-band model is used to simulate the spectral property of the glass. Results of the simulation show that glass rods of sufficiently large optical thickness should be treated as a semitransparent medium for radiative transfer, and it is reasonably accurate to assume it to be opaque to CO2 laser irradiation. It has been shown that the resulting temperature profile is strongly dependent on the laser parameters, i.e., the size of laser beam and the power of the laser. The diameter and speed of the moving glass rod are also important in determining the temperature field although the convective heat transfer coefficient between the glass rod and the environment has little effect.  相似文献   

15.
Recently, an efficient numerical method, which is called the collocation spectral method (CSM), for radiative heat transfer problems, has been proposed by the present authors. In this numerical method there exists the exponential convergence rate, which can obtain a very high accuracy even using a small number of grids. In this article, the CSM based on body-fitted coordinates (BFC) is extended to simulate radiative heat transfer problems in participating medium confined in 2D complex geometries. This numerical method makes simultaneously the use of the merits of both the CSM and BFC. In this numerical approach, the radiative transfer equation (RTE) in orthogonal Cartesian coordinates should be transformed into the equation in body-fitted nonorthogonal curvilinear coordinates. In order to test the efficiency of the developed method, several 2D complex irregular enclosures with curved boundaries and containing an absorbing, emitting and scattering medium are examined. The results obtained by the CSM are assessed by comparing the predictions with those in references. These comparisons indicate that the CSM based on BFC can be recommended as a good option to solve radiative heat transfer problems in complex geometries.  相似文献   

16.
In graded index medium, ray goes along a curved path determined by Fermat principle, and curved ray-tracing is very difficult and complex. To avoid the complicated and time-consuming computation of curved ray trajectories, a finite element method based on discrete ordinate equation is developed to solve the radiative transfer problem in a multi-dimensional semitransparent graded index medium. Two particular test problems of radiative transfer are taken as examples to verify this finite element method. The predicted dimensionless net radiative heat fluxes are determined by the proposed method and compared with the results obtained by finite volume method. The results show that the finite element method presented in this paper has a good accuracy in solving the multi-dimensional radiative transfer problem in semitransparent graded index medium.  相似文献   

17.
本文采用射线踪迹结合节点分析法和谱带模型,研究了漫反射不透明边界下吸收、发射、各向异性散射介质内的热辐射传递过程。考虑介质辐射能的入射和散射方向,导出漫反射、不透明边界、各向异性散射介质的辐射传递系数。在辐射平衡的情况下,考察了表面发射率和散射反照率对介质内辐射热流和温度场的影响。研究表明,介质不透明边界处存在温度跃迁现象,而且,内界面发射率越大,相应界面温度跃迁越小。  相似文献   

18.
Low-resolution radiative properties (absorptivities, transmissivities, intensities) of nonisothermal or inhomogeneous gas mixtures at high temperatures, suitable for radiative heat transfer applications (e.g., in combustion) are obtained from a line-by-line calculation, using recently published high-resolution spectroscopic data at 296 K given by AFGL. It is shown that absorptivities obtained for isothermal mixtures of CO2, CO, N2 (and sometimes H2O) agree with the corresponding measured spectra.  相似文献   

19.
刘相梅  李奇楠  李瑞 《中国物理 B》2016,25(6):65203-065203
The nanoparticle coagulation is investigated by using a couple of fluid models and aerosol dynamics model in argon with a 5% molecular acetylene admixture rf microdischarges,with the total input gas flow rate of 400 sccm.It co-exists with a homogeneous,secondary electron-dominated low temperature γ-mode glow discharges.The heat transfer equation and flow equation for neutral gas are taken into account.We mainly focused on investigations of the nanoparticle properties in atmospheric pressure microdischarges,and discussed the influences of pressure,electrode spacing,and applied voltage on the plasma density and nanoparticle density profiles.The results show that the characteristics of microdischarges are quite different from those of low pressure radio-frequency discharges.First,the nanoparticle density in the bulk plasma in microdischarges is much larger than that of low pressure discharges.Second,the nanoparticle density of 10 nm experiences an exponential increase as soon as the applied voltage increases,especially in the presheath.Finally,as the electrode spacing increases,the nanoparticle density decreased instead of increasing.  相似文献   

20.
This paper presents a modification of the cumulative wavenumber (CW) method to determine the radiative heat flux in non-uniform participating gases. Previous works in the literature have shown that the CW method renders accurate estimates of the radiative volumetric heat source in the medium. However, as will be shown in this work, the radiative heat flux can present considerable deviation of the correct solution, which results from the radiative energy balance not being satisfied by the CW method. A modification of the method is devised in this work to satisfy the radiative energy balance while keeping the same value of the radiative volumetric heat source. The proposed methodology is applied together with the discrete ordinates method to solve the radiation heat transfer in a one-dimensional slab containing a non-isothermal layer of carbon dioxide. The results are compared to the benchmark line-by-line (LBL) integration, and show that the modified CW method can satisfy the radiative energy balance, improving the estimation of the radiative heat flux in the medium.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号