首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 125 毫秒
1.
阐述了含吸收散射性介质三维空腔内辐射传递方程的离散坐标解法。讨论了入射散射项积分格式的选取,以及假散射和射线效应对解精度的影响。对三维矩形炉膛内辐射传递过程进行了数值模拟,并与区域法和离散传递法进行比较。比较结果表明离散坐标法具有较好的精度,是目前燃烧室内辐射传热过程数值模拟的一种较好的方法。  相似文献   

2.
瞬态效应和偏振特性对于短脉冲激光在散射性介质中的传输有重要影响。本文采用蒙特卡洛法来求解一维散射性介质内的瞬态偏振辐射传输问题。采用拒绝法确定光束的散射方向。定义了瞬态矢量辐射传输矩阵(TVRTM)来描述瞬态偏振辐射的传输特性,并以此得到了Stokes矢量的角度与时间分布。在蒙特卡洛模型中采用时间平移和叠加原理,可大幅度提高计算精度和计算效率。  相似文献   

3.
散射相函数对一维介质内辐射传递的影响规律   总被引:1,自引:0,他引:1  
采用有限体积法研究了一维线性各向异性散射介质内散射相函数对辐射传递的影响规律.经与理论解、辐射元法、蒙特卡洛法计算结果比较表明,有限体积法的计算结果更可靠,且不同散射相函数的辐射换热系统中,其无因次热流之比与光学厚度之间存在某种单调变化的函数关系,利用该函数关系可以检验模型的准确度.  相似文献   

4.
蒙特卡洛法、离散传递法中的假散射与射线效应   总被引:1,自引:1,他引:0  
本文构造了激光平行入射二维半透明介质的物理模型,研究了蒙特卡洛法、离散传递法中的假散射。通过分析 边界净热流研究了蒙特卡洛法、离散传递法中的射线效应。计算分析表明:蒙特卡洛法、离散传递法不存在假散射。蒙特 卡洛法不存在射线效应,离散传递法存在射线效应。在离散传递法中,随着射线数的增加,射线效应逐渐减少。  相似文献   

5.
DRESOR法对平行入射辐射问题的研究   总被引:2,自引:1,他引:1  
本采用一种基于蒙特卡洛法(Monte Carlo Method,MCM)求解辐射传递方程(Radiative Transfer Equation, RTE)的快捷、有效的方法-DRESOR法(Distributions of Ratios of Energy Scattered Or Reflected)在一维充满吸收、各向同性散射介质平行平板中,外部有平行入射条件下,求解计算空间点的辐射强度沿空间方向角的分布,而不需要辐射平衡和在空间位置坐标和方向角度坐标上同时离散辐射传递方程进行迭代求解。  相似文献   

6.
模拟辐射传热的离散坐标法的改进   总被引:1,自引:1,他引:0  
针对离散坐标法模拟求解炉内辐射换热的问题,在对辐射传递方程采用控制容积法离散时,按辐射方向上各界面之间的投影关系划分区域,对辐射传递方程在各子控制体上沿辐射传输方向进行积分,求解各子控制体的辐射强度,再取容积平均值作为最终节点的辐射强度的新离散坐标方法,定义为分段积分离散坐标法,并对三维矩型燃气炉内辐射换热进行了数值模拟,与传统离散坐标方法及区域法进行了比较,比较结果表明新离散坐标法较好的解决了假散射问题,提高了离散坐标法的精度.  相似文献   

7.
谈和平  夏新林 《计算物理》1995,12(2):241-247
采用控制容积法,离散传递(DT)法,结合谱带模型,研究了第一类及第三类非线性边界条件下三维圆柱体半透明介质内辐射与导热非稳态复合换热的数值计算方法,经与区域法,改进型蒙特卡洛法的计算结果比较表明,本方法的计算结果的可信的,精度也较高。  相似文献   

8.
用基于蒙特卡洛法(Monte Carlo Method,MCM)的DRESOR法(Distributions of Ratios of Energy Scattered by the medium Or Reflected by the boundary surface)求解入射辐射经过介质散射、壁面反射传递后辐射强度随时间变化的瞬态辐射传递方程(Transient RadiativeTransfer Equation,TRTE)问题。通过在系统内计算一单位瞬态入射辐射对介质的DRESOR数分布,就能计算任意时间内入射辐射在系统内时间响应特性,这样有效提高数值方法处理瞬态辐射问题的通用性。并且能够获得高方向分辨率的辐射强度随时间变化的结果,这是目前大多数数值处理方法比较难做到的,显示出了DRESOR法处理瞬态入射辐射问题的能力.  相似文献   

9.
以设计的5 kW太阳模拟器为光源,加热斯特林发动机的吸热器.首先以蒙特卡洛光线追迹法确定太阳模拟器与斯特林发动机吸热器间辐射热流分布,然后将辐射热流分布的计算结果以边界条件形式传递给CFD模型,对吸热器的温度分布特性进行数值计算;吸热器壁面温度采用安捷伦数据采集仪及热电偶温度计进行测试,吸热器壁面温度数值模拟结果与实验...  相似文献   

10.
复分散系相函数在辐射介质传热中是关键参数,蒙特卡洛法兼具数值算法与试验测量的优点.利用该方法计算复分散系的多重散射相函数克服了以往算法的缺点,可以体现多重散射的影响,并且可以计算任意形状控制体的相函数.大量的数学实验发现当介质系密度增大时,散射能量在4π空间内分布趋于均匀.  相似文献   

11.
The scalar Boltzmann transport equation (BTE) is often applicable to radiative energy transfer, electron-beam propagation, as well as thermal conduction by electrons and phonons provided that the characteristic length of the system is much larger than the wavelength of energy carriers and that certain interference phenomena and the polarization nature of carriers are ignored. It is generally difficult to solve the BTE analytically unless a series of assumptions are introduced for the particle distribution function and scattering terms. Yet, the BTE can be solved using statistical approaches such as Monte Carlo (MC) methods without simplifying the underlying physics significantly. Derivations of the MC methods are relatively straightforward and their implementation can be achieved with little effort; they are also quite powerful in accounting for complicated physical situations and geometries. MC simulations in radiative transfer, electron-beam propagation, and thermal conduction by electrons and phonons have similar simulation procedures; however, there are important differences in implementing the algorithms and scattering properties between these simulations. The objective of this review article is to present these simulation procedures in detail and to show that it is possible to adapt an existing MC computer code, for instance, in radiative transfer, to account for physics in electron-beam transport or phonon (or electronic thermal) conduction by sorting out the differences and implementing the correct corresponding steps. Several simulation results are presented and some of the difficulties associated with different applications are explained.  相似文献   

12.
This contribution presents a new Ray-tracing method for calculating effective radiative properties of densely packed spheres in non-absorbing or semitransparent host medium. The method is restricted to the geometric optic objects and neglects the wave effects. The effective radiative properties such as the absorption and scattering coefficients, and phase function are retrieved from the calculation of mean-free paths of scattering and absorption, and the angular scattering probability of radiation propagating in the dispersed medium. The model accounts for the two geometric effects called here as non-point scattering and ray transportation effects. The successful comparison of the current model with data of radiative properties and transmittances of particle beds in a non-absorbing medium reported in the literature confirm its suitability. It is shown that: (i) for opaque or absorbing particles (not systematically opaque), the non-point scattering is the dominant geometric effects whereas both non-point scattering and ray transportation effects occur for weakly absorbing and transparent particles. In the later cases, these two geometric effects oppose and may cancel out. This may explain why the Independent scattering theory works well for packed of quasi-transparent particles; (ii) the non-point scattering and ray transportation effects can be captured through the scattering and absorption coefficients while using the classical form of phase function. This enables using the standard radiative transfer equation (RTE); (iii) the surrounding medium absorption can be accounted for without any homogenization rule. It contributes to increasing the effective absorption coefficient of the composite medium as expected but, at the same time, it reduces the particle extinction; and (iv) the current transfer calculation predicts remarkably the results of direct Monte Carlo (MC) simulation. This study tends therefore to confirm that the RTE can be applied to densely packed media by using effective radiative properties.  相似文献   

13.
A vector radiative transfer model has been developed for a coupled atmosphere-ocean system. The radiative transfer scheme is based on the discrete ordinate and matrix operator methods. The reflection/transmission matrices and source vectors are obtained for each atmospheric or oceanic layer through the discrete ordinate solution. The vertically inhomogeneous system is constructed using the matrix operator method, which combines the radiative interaction between the layers. This radiative transfer scheme is flexible for a vertically inhomogeneous system including the oceanic layers as well as the ocean surface. Compared with the benchmark results, the computational error attributable to the radiative transfer scheme has been less than 0.1% in the case of eight discrete ordinate directions. Furthermore, increasing the number of discrete ordinate directions has produced computations with higher accuracy. Based on our radiative transfer scheme, simulations of sun glint radiation have been presented for wavelengths of 670 nm and 1.6 μm. Results of simulations have shown reasonable characteristics of the sun glint radiation such as the strongly peaked, but slightly smoothed radiation by the rough ocean surface and depolarization through multiple scattering by the aerosol-loaded atmosphere. The radiative transfer scheme of this paper has been implemented to the numerical model named Pstar as one of the OpenCLASTR/STAR radiative transfer code systems, which are widely applied to many radiative transfer problems, including the polarization effect.  相似文献   

14.
The upwelling atmospheric radiation in the millimeter wave spectral range is influenced by the presence of cirrus clouds. A plane parallel radiative transfer model which can take into account the effect of multiple scattering by ice particles in the cirrus has been developed and is used to simulate the brightness temperatures as they would be measured by a satellite instrument. The model uses an iterative procedure to solve the radiative transfer equation. The formulation of the model is such that it can easily be adapted to treat the full specific intensity vector instead of just the scalar total intensity. A convergence test for the model is explained and two cirrus cloud scenarios are simulated. The results illustrate the linearity of microwave radiative transfer for not too strong cirrus clouds in this frequency region.  相似文献   

15.
The properties of radiation through an aerosol medium have been achieved. This has been done by employing Mie scattering theory to calculate the radiation transfer scattering parameters in the form of extinction, absorption and scattering efficiencies. The equation of radiative transfer for the heat flux through a plane parallel atmosphere of aerosol has been solved. The aerosol size distributions are found in practical systems. Average efficiencies over size distribution for spherical particles of complex refractive index are calculated. Therefore, the radiative properties of stratospheric aerosols have been done. The obtained results found to be in a good agreement with the previous work.  相似文献   

16.
基于电磁散射与辐射传输中的基本理论,对紫外波段霾尺度范围内满足特定分布的多种气溶胶粒子的散射相函数进行了研究.提出了一种直接随机抽样拟合散射相函数的方法.比较了H-G相函数、改进的H-G相函数及随机抽样拟合的相函数与多分散系Mie相函数的偏离程度.数值计算了不同相函数拟合方法对应气溶胶的传输特性.计算结果表明,相函数的准确模拟计算对于蒙特卡罗方法等辐射传输问题的解决具有十分重要的意义.  相似文献   

17.
The coupled conductive radiative transfer problem in two homogeneous layers slab of anisotropic scattering with specularly reflecting boundaries has been considered. A Galerkin-iterative technique is used to solve the coupled conductive radiative heat equations in integral forms for the two layers. Numerical results are obtained for the temperature, the conductive, radiative and the total heat fluxes for the two homogeneous layers with isotropic and anisotropic scattering. The calculations are also carried out for homogeneous plane parallel medium with anisotropic scattering which show good agreement with the published calculations.  相似文献   

18.
本文采用射线踪迹结合节点分析法和谱带模型,研究了漫反射不透明边界下吸收、发射、各向异性散射介质内的热辐射传递过程。考虑介质辐射能的入射和散射方向,导出漫反射、不透明边界、各向异性散射介质的辐射传递系数。在辐射平衡的情况下,考察了表面发射率和散射反照率对介质内辐射热流和温度场的影响。研究表明,介质不透明边界处存在温度跃迁现象,而且,内界面发射率越大,相应界面温度跃迁越小。  相似文献   

19.
The curved ray tracing method (CRT) is extended to radiative transfer in the linear-anisotropic scattering medium with graded index from non-scattering medium. In this paper, the CRT is presented to solve one-dimensional radiative transfer in the linear-anisotropic scattering gray medium with a linear refractive index and two black boundaries. The predicted temperature distributions and radiative heat flux at radiative equilibrium are determined by the proposed method, and numerical results are compared with the data in references. The results show that the CRT has a good accuracy for radiative transfer in the linear-anisotropic scattering medium with graded index and the dimensionless emissive power and dimensionless radiative heat flux depend on the dimensionless refractive index gradient. It can also be seen that the dimensionless refractive index gradient has important effects on the temperature discontinuity at the boundaries.  相似文献   

20.
A completely forward Monte Carlo radiative transfer code has been developed with biasing techniques to efficiently solve the polarized radiative transfer equation for the full Stokes vector. The code has been adapted to accommodate plane parallel/3-D vertically/horizontally inhomogeneous scattering atmospheres in Cartesian geometries. Particular attention has been paid in stochastically treating the propagation, the emission and the scattering through anisotropic media particularly suited for clouds containing perfectly or partially oriented particles. Our modelling is very appealing because all its biasing techniques do not introduce unphysical Stokes vector. Numerical results and comparisons with benchmark tests are presented for verification.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号