首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.

Control interventions and farming knowledge are equally important for plant disease control. In this article, a mathematical model has been derived using saturated response functions (nonlinear infection rate) for studying the dynamics of mosaic disease with farming awareness based roguing (removal of infected plants) and insecticide spraying . It is assumed that the use of roguing and spraying depend on the level of awareness about the disease. The model possesses three equilibria namely the trivial, which is always unstable, the disease-free equilibrium which is stable if the basic reproduction number is below unity and the coexisting which may be stable or can exhibit Hopf-bifurcation under certain condition. Finally, we have opted an optimal control problem introducing three control parameters for determining the optimal level of roguing, spraying and cost regarding media awareness for cost-effective control of mosaic disease. Numerical simulations establish the main results suggesting that the awareness campaigns through radio, TV advertisement are important for eradication of the disease. Also, awareness campaign, roguing and spraying should be incorporated with optimal level for cost effective control of mosaic disease.

  相似文献   

2.
Pulse vaccination is an effective strategy for the elimination of infectious diseases. In this paper, we considered an SEIR epidemic model with delay and impulsive vaccination direct at a variable population and analyzed its dynamic behaviors. Using the discrete dynamical system determined by the stroboscopic map, we obtain the exact infection‐free periodic solution of the impulsive epidemic system, further, prove that the infection‐free periodic solution is globally attractive if the vaccination rate is larger than θ* or the length of latent period of disease is larger than τ* or the length of period of impulsive vaccination is smaller than T*. We also prove that a short latent period of the disease (with τ) or a long period of pulsing (with T) or a small pulse vaccination rate (with θ) is sufficient to bring about the disease is uniformly persistent. Copyright © 2011 John Wiley & Sons, Ltd.  相似文献   

3.
A Filippov-type plant disease model is developed by introducing a interaction ratio threshold, the number of susceptible plants infected by per diseased plant, which determines whether control measures including replanting or roguing are carried out. The main purpose of this paper is to give a completely qualitative analysis of the model. By employing Poincaré maps, our analysis reveals rich dynamics including a global attractor bounded by a touching closed orbit, which is convergent in finite time from its outside, a global attractor bounded by two touching closed orbits and a pseudo-saddle, and a globally asymptotically stable pseudo-node. Moreover, we give biological implications of our results in implementing control strategies for plant diseases.  相似文献   

4.
In this paper, we consider an SIS epidemic reaction–diffusion model with spontaneous infection and logistic source in a heterogeneous environment. The uniform bounds of solutions are established, and the global asymptotic stability of the constant endemic equilibrium is discussed in the case of homogeneous environment. This paper aims to analyze the asymptotic profile of endemic equilibria (when it exists) as the diffusion rate of the susceptible or infected population is small or large. Our results on this new model reveal that varying total population and spontaneous infection can enhance persistence of infectious disease, which may provide some implications on disease control and prediction.  相似文献   

5.
魏春金  陈兰荪 《数学研究》2008,41(4):393-400
本文考虑了一类食饵具有流行病和阶段结构的脉冲时滞捕食模型.利用脉冲时滞微分方程的相关理论和方法,获得易感害虫根除周期解全局吸引的充分条件以及当脉冲周期在一定范围内时,天敌与易感害虫可以共存且易感害虫的密度可以控制在经济危害水平E(EIL)之下.我们的结论为现实的害虫管理提供了可靠的策略依据.  相似文献   

6.
A susceptible‐infected‐susceptible (SIS) epidemic reaction‐diffusion model with saturated incidence rate and spontaneous infection is considered. We establish the existence of endemic equilibrium by using a fixed‐point theorem. The global asymptotic stability of the constant endemic equilibrium is discussed in the case of homogeneous environment. We mainly investigate the effects of diffusion and saturation on asymptotic profiles of the endemic equilibrium. When the saturated incidence rate tends to infinity, the susceptible and infective distributes in the habitat in a nonhomogeneous way; this result is in strong contrast with the case of no spontaneous infection, where the endemic equilibrium tends to the disease free equilibrium. Our analysis shows that the spontaneous infection can enhance the persistence of an infectious disease and may provide some useful implications on disease control.  相似文献   

7.
讨论了带有脉冲免疫和传染年龄的传染病模型.传染类的恢复率是传染年龄的函数,当染病再生数小于1时,文章得到无病周期解是全局吸引的.如果总人口规模变化,也可得到类似的结论.最后,提出了带有脉冲免疫和传染年龄传染病模型待解决的问题.  相似文献   

8.
In this paper, we deal with an SIRS reaction–diffusion epidemic model with saturation infection mechanism. Based on the uniform boundedness of the parabolic system, we investigate the extinction and persistence of the infectious disease in terms of the basic reproduction number. To better investigate the effects of infection mechanism and individual diffusion, we further analyze the asymptotic profiles of the endemic equilibrium for small or large motility rate and large saturation rate. In particular it is shown that large saturation may cause the elimination of disease. Our study may provide some significant useful insight on disease control and prevention.  相似文献   

9.
Three different vaccination and treatment strategies in the SIR epidemic model with saturated infectious force and vertical transmission are analyzed. The dynamics of epidemic models are globally investigated by using Floquet theory and comparison theorem of impulsive differential equation. Thresholds are identified and global stability results are proved. For every treatment and vaccination strategy, the disease-free periodic solution of impulsive system has been obtained and is found to be globally asymptotically stable when the basic reproduction number is less than one, equivalently the cure rate is larger than the threshold value, whereas the disease is persistent when the basic reproduction number is larger than one. These results indicate that a large cure rate will lead to the eradication of a disease.  相似文献   

10.
From a biological pest management standpoint, epidemic diseases models have become important tools in control of pest populations. This paper deals with an impulsive delay epidemic disease model with stage-structure and a general form of the incidence rate concerning pest control strategy, in which the pest population is subdivided into three subgroups: pest eggs, susceptible pests, infectious pests that do not attack crops. Using the discrete dynamical system determined by the stroboscopic map, we obtain the exact periodic susceptible pest-eradication solution of the system and observe that the susceptible pest-eradication periodic solution is globally attractive, provided that the amount of infective pests released periodically is larger than some critical value. When the amount of infective pests released is less than another critical value, the system is shown to be permanent, which implies that the trivial susceptible pest-eradication solution loses its attractivity. Our results indicate that besides the release amount of infective pests, the incidence rate, time delay and impulsive period can have great effects on the dynamics of our system.  相似文献   

11.
讨论用脉冲隔离的方案控制HIV的传播.假定艾滋病感染者发展成艾滋病人和感染年龄有关,我们建立了带脉冲隔离类和感染年龄的HIV模型.在一定条件下证明该模型的无病平衡态是全局稳定的.  相似文献   

12.
K-means聚类算法在SIR传染病模型中的应用研究   总被引:1,自引:0,他引:1  
基于SIR传染病模型,建立了具有K-means聚类算法的SIR元胞自动机模拟模型.通过对分别服从高斯分布和随机均匀分布的两类初始感染源的分析与模拟,给出了疾病感染半径与隔离半径对疾病传播的影响.结果显示:在两种不同类型的初试分布下,感染者的最大值分别与疾病感染传播半径和隔离半径呈正相关与负相关关系,感染者数量随时间的变化率亦呈现相同的变化规律.初始数据的不同分布类型只影响这种正负相关关系的增速.研究结果可为控制和消除传染病提供有效合理的隔离措施,为卫生部门提供防控传染病的理论支持.  相似文献   

13.
ABSTRACT

From continuous standard SIR model, which is configured from two sequenced flows (a) susceptible – infectious and (b) infectious – removed, we obtain two impulsive SIR models assuming different time scales for (a) respect to (b) (one more quickly than the other and inversely). By associating respective stroboscopic maps to this impulsive systems, two discretizations are defined. The dynamics of these maps are analysed in order to get thresholds conditions for predicting (or to control) epidemic outbreaks. As it is traditional for SIR systems, we also find conditions for the final size of the susceptible group.  相似文献   

14.
Control of epidemic infections is a very urgent issue today. To develop an appropriate strategy for vaccinations and effectively prevent the disease from arising and spreading, we proposed a modified Susceptible‐Infected‐Removed model with impulsive vaccinations. For the model without vaccinations, we proved global stability of one of the steady states depending on the basic reproduction number R0. As typically in the epidemic models, the threshold value of R0 is 1. If R0 is greater than 1, then the positive steady state called endemic equilibrium exists and is globally stable, whereas for smaller values of R0, it does not exist, and the semi‐trivial steady state called disease‐free equilibrium is globally stable. Using impulsive differential equation comparison theorem, we derived sufficient conditions under which the infectious disease described by the considered model disappears ultimately. The analytical results are illustrated by numerical simulations for Hepatitis B virus infection that confirm the theoretical possibility of the infection elimination because of the proper vaccinations policy. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   

15.
Two new models for controlling diseases, incorporating the best features of different control measures, are proposed and analyzed. These models would draw from poultry, livestock and government expertise to quickly, cooperatively and cost-effectively stop disease outbreaks. The combination strategy of pulse vaccination and treatment (or isolation) is implemented in both models if the number of infectives reaches the risk level (RL). Firstly, for one time impulsive effect we compare three different control strategies for both models in terms of cost. The theoretical and numerical results show that there is an optimal vaccination and treatment proportion such that integrated pulse vaccination and treatment (or isolation) reaches its minimum in terms of cost. Moreover, this minimum cost of integrated strategy is less than any cost of single pulse vaccination or single treatment. Secondly, a more realistic case for the second model is investigated based on periodic impulsive control strategies. The existence and stability of periodic solution with the maximum value of the infectives no larger than RL is obtained. Further, the period T of the periodic solution is calculated, which can be used to estimate how long the infectious population will take to return back to its pre-control level (RL) once integrated control tactics cease. This implies that we can control the disease if we implement the integrated disease control tactics every period T. For periodic control strategy, if we aim to control the disease such that the maximum number of infectives is relatively small, our results show that the periodic pulse vaccination is optimal in terms of cost.  相似文献   

16.
The spatial spread of a disease in an SIRS epidemic model with immunity imparted by subclinical infection on a population has been considered. The incidence rate of infection and the rate of immunization are both of nonlinear type. The dynamics of the infectious disease and its endemicity in local and global sense have been investigated.  相似文献   

17.
A mathematical model is presented for the dynamics of the rate of infection of the Lyme disease vector tick Ixodes dammini (Acari: Ixodidae) by the spirochete Borrelia burgdorferi, in the Atlantic Northeast of the United States. According to this model, moderate reductions in the abundance of white-tailed deer Odocoileus virginianus may either decrease or increase the spirochete infection rate in ticks, provided the deer are not reservoir hosts for Lyme disease. Expressions for the basic reproductive rate of the disease are computed analytically for special cases, and it is shown that as the basic reproductive rate increases, a proportional reduction in the tick population produces a smaller proportional reduction in the infection rate, so that vector control is less effective far above the threshold. The model also shows that control of the mouse reservoir hosts Peromyscus leucopus could reduce the infection rate if the survivorship of juvenile stages of ticks were reduced as a consequence. If the survivorship of juvenile stages does not decline as the rodent population is reduced, then rodent reduction can increase the spirochete infection rate in the ticks.  相似文献   

18.
Control schemes for infectious disease models with time-varying contact rate are analyzed. First, time-constant control schemes are introduced and studied. Specifically, a constant treatment scheme for the infected is applied to a SIR model with time-varying contact rate, which is modelled by a switching parameter. Two variations of this model are considered: one with waning immunity and one with progressive immunity. Easily verifiable conditions on the basic reproduction number of the infectious disease are established which ensure disease eradication under these constant control strategies. Pulse control schemes for epidemic models with time-varying contact rates are also studied in detail. Both pulse vaccination and pulse treatment models are applied to a SIR model with time-varying contact rate. Further, a vaccine failure model as well as a model with a reduced infective class are considered with pulse control schemes. Again, easily verifiable conditions on the basic reproduction number are developed which guarantee disease eradication. Some simulations are given to illustrate the threshold theorems developed.  相似文献   

19.
This paper mainly investigates synchronization of complex dynamical networks (CDNs) with both system delay and coupled delay through distributed delayed impulsive control. Instead of constraining the impulsive weight and impulsive delay one by one, a new concept of average delayed impulsive weight is proposed to obtain more relaxed conditions. Subsequently, based on the impulsive control topology, Lyapunov theory and linear matrix inequality (LMI) design, certain flexible criteria of global exponential synchronization (GES) are given and the corresponding convergence rate is estimated. It is interesting to see that the CDNs can still achieve synchronization under comprehensive conditions though impulsive weights work negatively. Namely, the delays in impulsive control are able to promote synchronization potentially. Finally, simulations are given to show that the distributed delayed impulsive control can not only speeds up the convergence rate for synchronized networks, but also facilitates synchronization for desynchronized networks. In addition, the obtained results can be applied to unmanned craft systems.  相似文献   

20.
Impulsive control systems are suitable to describe and control a venue of real-life problems, going from disease treatment to aerospace guidance. The main characteristic of such systems is that they evolve freely in-between impulsive actions, which makes it difficult to guarantee its permanence in a given state-space region. In this work, we develop a method for characterizing and computing approximations to the maximal control invariant sets for linear impulsive control systems, which can be explicitly used to formulate a set-based model predictive controller. We approach this task using a tractable and non-conservative characterization of the admissible state sets, namely the states whose free response remains within given constraints, emerging from a spectrahedron representation of such sets for systems with rational eigenvalues. The so-obtained impulsive control invariant set is then explicitly used as a terminal set of a predictive controller, which guarantees the feasibly asymptotic convergence to a target set containing the invariant set. Necessary conditions under which an arbitrary target set contains an impulsive control invariant set (and moreover, an impulsive control equilibrium set) are also provided, while the controller performance are tested by means of two simulation examples.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号