首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Analytical temperature rising elution fractionation (TREF) is a complementary technique of gel permeation chromatography (GPC) for the analysis of polyolefin structure. By connecting a high-temperature GPC with a gas chromatograph (GC) oven it is possible to build a fast analytical TREF, which permits a dramatic reduction in analysis time by directly injecting the polymer solution onto the cold column, as compared with the traditional TREF in which the slow cooling step usually takes more than 40 h. The method was successfully applied on six commercial random and homo polypropylenes for which similar thermograms were obtained for fast- and slow-cooling TREF. The obtained results show subtle differences in the behavior of polypropylene melting in solution as compared with previously analyzed polyethylene. The most important is the difference of 12.6°C between the melting temperatures in the presence of trichlorobenzene and xylene, which is much higher for polypropylene than the 3.7°C measured for polyethylene.  相似文献   

2.
Analytical temperature rising elution fractionation (TREF) of linear polyethylene (PE) samples with different densities was done in 1-chloronaphthalene using a gel permeation chromatograph (GPC) coupled with a gas chromatograph. The corrected peak elution temperatures completed the previously obtained data in trichlorobenzene, xylene, and dibutoxymethane. A mathematical correlation was found for diluted linear PE samples between the α parameter of the Mark-Houwink-Sakurada equation governing the retention time in GPC, the bulk melting temperature measured by differential scanning calorimetry (DSC), and the TREF peak elution temperature. The extrapolation to the melting temperature measured by DSC gives α = 0.5, thus confirming the hypothesis that polymer conformations in the melt are similar to those in a theta solvent.  相似文献   

3.
Compositionally homogeneous poly(ethylene‐α‐olefin) random copolymers with 1‐butene and 1‐hexene comonomers have been studied. The melting of solution‐crystallized specimens of these copolymers in the presence of trichlorobenzene as a diluent with differential scanning calorimetry (DSC) is well correlated with analytical temperature rising elution fractionation (A‐TREF) elution temperature profiles. This indicates that the A‐TREF experiment is essentially a diluent melting experiment. Furthermore, the correction of the corresponding solid‐state melting endotherms of these copolymers with Flory's diluent melting equation yields curves that also correlate very well with the DSC diluent melting curves and the A‐TREF elution temperature profiles. Values of χ, the Flory–Huggins interaction parameter, are determined for these copolymers in trichlorobenzene. χ decreases as short‐chain branching increases. The A‐TREF elution temperature profiles of one of these copolymers are the same, within experimental error, for dilute‐solution crystallizations of the copolymer performed over an extremely broad time schedule (10 s to 3 days). This indicates the profound effect of the branches, as limiting points of the ethylene sequences, in controlling the crystal thickness distribution, which in turn controls the melting point in the presence of the diluent, or the elution temperature from the A‐TREF. © 2001 John Wiley & Sons, Inc. J Polym Sci Part B: Polym Phys 39: 2819–2832, 2001  相似文献   

4.
Summary: Temperature rising elution fractionation (TREF) has become a popular analytical technique that is able to determine the chemical composition distribution (CCD) of an ethylene/α-olefin copolymer. An infrared (IR) detector is commonly used in TREF detection to measure the concentration of the polymer solution exiting the column as a function of elution temperature. The chemical composition of the eluting polymer at a given elution temperature can be predicted from the relationship between comonomer content and TREF elution temperature pre-established through 13C nuclear magnetic resonance (NMR) analysis of TREF fractions. In this article, a Fourier transform infrared (FT-IR) spectrometer has been coupled with a TREF instrument to provide a more powerful tool for characterizing complex olefin copolymers. The Partial Least Squares (PLS) technique is used when analyzing the FT-IR spectra of the eluting polymer solutions. The power of on-line FT-IR detection in TREF is demonstrated using a few complex copolymer systems, such as ethylene-octene copolymer, polystyrene grafted ethylene-vinyl acetate copolymer and ethylene-methyl acrylate copolymer.  相似文献   

5.
升温淋洗分级技术是根据结晶性聚合物的结晶度进行分级和表征的一项分析和制备技术,在聚烯烃非均匀性的表征和窄组成分布样品的制备中有重要应用。本文主要介绍升温淋洗分级原理、热力学模型、装置技术特点、分析方法以及在聚乙烯研究中最新应用进展。  相似文献   

6.
The elution behavior of polyethylene (PE) and the three stereoisomers of polypropylene (PP) was studied on porous graphite along with three other carbon‐based sorbents, carbon‐clad zirconia particles, activated carbon, and exfoliated graphite in a systematic way in this work. Decahydronaphthalene, 1,2,3,4‐tetrahydronaphthalene, 1,3,5‐trimethylbenzene, tetrachloroethylene, xylene and p‐xylene were used as mobile phases. While PE is adsorbed to various extents on all the tested carbonaceous sorbents from the majority of the solvents, PP is fully adsorbed only in selected cases. Testing alcohols (C7–C9) as mobile phase with Hypercarb? indicates that all stereoisomers of PP are selectively adsorbed and desorbed when a solvent gradient alcohol→1,2,4‐trichlorobenzene is used at 160°C. The retention of all stereoisomers of PP increases with the polarity of the alcohol. Linear PE is retained on Hypercarb? even from 1,2‐dichloro‐ and 1,2,4‐trichlorobenzene, when a temperature below 120°C is applied, while it is not retained from these solvents at higher temperatures. All stereoisomeric forms of PP are not adsorbed under the same conditions. Some of the tested new sorbent/solvent systems have potential to be applied in routine analysis of industrially synthesised polyolefins.  相似文献   

7.
Temperature rising elution fractionation (TREF) fractionates polymer chains with respect to their crystallizability, independently of molecular weight effects. In order to achieve a good fractionation, TREF requires a time‐consuming polymer deposition step over an inert support before the elution step. A single‐step crystallization fractionation method has been developed recently,1,2 Crystallization Analysis Fractionation (CRYSTAF), in which the chemical composition (or short chain branching) distribution of olefin copolymers can be measured by monitoring on‐line polymer concentration in solution at decreasing temperatures. For the present experimental investigation, a CRYSTAF‐prototype has been assembled and used to fractionate several linear low‐density polyethylene (LLDPE) samples. These results were compared to the ones measured by the commercial CRYSTAF apparatus from Polymer ChAR. Additionally, CRYSTAF results from Polymer ChAR were compared to analytical TREF results. © 1999 John Wiley & Sons, Inc. J Polym Sci B: Polym Phys 37: 539–552, 1999  相似文献   

8.
Recent developments on the temperature rising elution fractionation (TREF) technique, understanding the impact strength of polyethylene blends based on their chemical structure, as well as ongoing discussions on REACH legislation regarding the oligomer fraction of polymers, are all reasons for better comprehension of the separation mechanism in TREF. To achieve this goal, two carefully chosen blends of linear metallocene polyethylene were analyzed by TREF over a large domain of crystallization rates. The results allowed updating the “onion skin” model for the crystallization kinetics during the cooling step of TREF. The advantages and limitations of the TREF technique for different applications are discussed.  相似文献   

9.
Summary: The chemical composition distribution has been shown to be the most critical and discriminating parameter in understanding the performance of industrial polyolefins with non homogeneous comonomer incorporation. The chemical composition distribution is being analyzed by well known techniques such as temperature rising elution fractionation, TREF, crystallization analysis fractionation, CRYSTAF and crystallization elution fractionation, CEF. These techniques separate according to crystallizability and provide a powerful and predictable separation of components based on the presence of branches, irregularities or tacticity differences, independently of the molar mass. TREF, CRYSTAF and CEF can not be used, however, for the separation of more amorphous resins, and may not always provide the best solution for complex multi-component resins due to the existence of some co-crystallization. The application of high temperature interactive HPLC to polyolefins opened a new route to characterize these types of polymers. The use of solvent gradient HPLC for separation of polyethylene and polypropylene and the developments in HPLC on carbon based columns extended further the application of high temperature HPLC in polyolefins. A new approach has been developed recently using the carbon based column but replacing solvent gradient by a thermal gradient which facilitates the analysis of polyethylene copolymers and provides a powerful tool for the analysis of elastomers. Thermal gradient interaction chromatography (TGIC) is being compared with TREF and CEF with the analysis of model samples. The advantages/disadvantages of each technique are being investigated and discussed. The combination of TGIC and TREF/CEF provides an extended range of separation of polyolefins.  相似文献   

10.
姬相玲 《高分子科学》2015,33(7):1000-1008
A series of copolymers of ethylene with 1-hexene synthesized using a metallocene catalyst are selected and mixed. The blend is fractionated via preparative temperature rising elution fractionation(P-TREF). All fractions are characterized via high-temperature gel permeation chromatography(GPC), 13 C nuclear magnetic resonance spectroscopy(13C-NMR), and differential scanning calorimetry(DSC). The changes in the DSC melting peak temperatures of the fractions from P-TREF as a function of elution temperature are almost linear, thereby providing a reference through which the elution temperature of TREF experiments could be selected. Moreover, the standard calibration curve(ethylene/1-hexene) of P-TREF is established, which relates to the degree of short-chain branching of the fractions. The standard calibration curve of P-TREF is beneficial to study on the complicated branching structure of polyethylene. A convenient method for selecting the fractionation temperature for TREF experiments is elaborated. The polyethylene sample is fractionated via successive self-nucleation and annealing(SSA) thermal fractionation. A multiple-melting endotherm is obtained through the final DSC heating scan for the sample after SSA thermal fractionation. A series of fractionation temperatures are then selected through the relationship between the DSC melting peak temperature and TREF elution temperature.  相似文献   

11.
The molecular structure elucidation of complex ethylene-propylene copolymers (EPCs) has benefited tremendously from the ability to combine preparative temperature rising elution fractionation (prep TREF) with various conventional analytical techniques. Recently reported, prep TREF-high-temperature solvent gradient interaction chromatography (HT-SGIC) (Cheruthazhekatt et. al, Macromolecules 45:2025–2034, 2012) is one of the most effective and highly useful coupled methods that allow for the exact measurement of the chemical composition distribution (CCD) present in various components of EPCs. The major drawback of prep TREF involving slow crystallization and elution steps is the long time per experiment. Here, we present a new and by far the simplest and fastest preparative fractionation method for complex polyolefins—preparative solution crystallization fractionation (prep SCF). The scope of the present study was to achieve a fast fractionation of complex bulk samples into an amorphous, semicrystalline and highly crystalline fraction, in sufficient amounts for the subsequent detailed compositional analysis. The effects of two different solvents, xylene and trichlorobenzene (TCB), and their influence on the solution crystallization of chemically different components of EPC were systematically investigated by combining prep SCF with crystallization analysis fractionation (CRYSTAF), FTIR, differential scanning calorimetry (DSC) and HT-SGIC analyses. Significant differences in the chemical composition of similar SCF fractions obtained from xylene and TCB were observed indicating the strong influence of the solvent on solution crystallization. Prep SCF-HT-SGIC results showed that, under similar experimental conditions, TCB as the fractionation solvent provides superior separation of complex semicrystalline ethylene-propylene (EP) components. Very interestingly, for the first time, separation of soluble fractions (30 °C) of iPP, EPC and PE homopolymer components in complex EPC was achieved by prep SCF in TCB. On the other hand, SCF fractionation in xylene provides a soluble fraction that is perfectly amorphous as has been shown by DSC and CRYSTAF. Based on these results, the present SCF approach and an updated method of the combination of prep SCF-HT-SGIC hold significant promise for the fractionation and characterization of similar complex EPCs in a simple way within a short analysis time, by using significantly smaller amounts of solvent compared to the previously reported, rather time-consuming, prep TREF-HT-SGIC combination. No similarly selective solution crystallization fractionations in preparative scale have been reported before.
Figure
Figure illustrates the compositional heterogeneity (by DSC and HT-SGIC) observed in the soluble fraction of a complex ethylene propylene copolymer obtained by using a simple and rapid fractionation technique, preparative solution crystallization fraction (Prep SCF) in solvent TCB  相似文献   

12.
Temperature rising elution fractionation hyphenated to size exclusion chromatography (TREF × SEC) is a routine technique to determine the chemical heterogeneity of semicrystalline olefin copolymers. A serious limitation is its applicability to non crystallizing samples. Comprehensive high temperature two-dimensional liquid chromatography (HT 2D-LC) gives an alternative to characterize the chemical heterogeneity of copolymers irrespective of their crystallizability. We have hyphenated interactive HPLC, which separates polyolefins according to their chemical composition, with high-temperature size exclusion chromatography (SEC), which distinguishes polyolefins with regard to their molar mass at 160 °C. The first separation step was based on a selective adsorption of macromolecules on a Hypercarb® column packed with porous graphite particles and subsequent desorption by a gradient 1-decanol → 1,2,4-trichlorobenzene at 160 °C. The SEC column was calibrated with polypropylene (PP) and polyethylene (PE) standards and it turned out that the injection solvent from the first dimension influenced the elution of PP in the SEC column, while the retention of PE was virtually constant. HT 2D-LC was then used to separate a broad variety of polyolefin blends containing PE, PP with different microstructure, ethylene–propylene (EP) and ethylene–propylene–diene (EP(D)M) rubber and ethylene/1-hexene copolymers. For the first time it has been shown that the elution of iPP in the gradient HPLC is molar mass dependent. The results from the HT 2D-LC separation were compared to those from TREF × SEC-experiments. The particular advantage of HT 2D-LC over TREF × SEC is the fact that HT 2D-LC is also applicable to non crystallizing polyolefin samples. The new technique therefore resolves the problem to analyze the chemical heterogeneity of non crystallizing olefin copolymers like EP and EP(D)M copolymers.  相似文献   

13.
For a long time ethylene‐propylene rubber (EPR) copolymers with high comonomer contents were believed to be amorphous materials with a random copolymer composition. This is not completely correct as has been shown by temperature rising elution fractionation (TREF) combined with differential scanning calorimetry (DSC), crystallization analysis fractionation (CRYSTAF), and high temperature–high‐performance liquid chromatography (HT‐HPLC). When using only conventional crystallization‐based fractionation methods, the comprehensive compositional analysis of EPR copolymers was impossible due to the fact that large fractions of these copolymers do not crystallize under CRYSTAF conditions. In the present work, HT‐HPLC was used for the separation of the EPR copolymers according to their ethylene and propylene distributions along the polymer chains. These investigations showed the existence of long ethylene sequences in the bulk samples which was further confirmed by DSC. The results on the bulk samples prompted us to conduct preparative fractionations of EPR copolymers having varying ethylene contents using TREF. Surprisingly, significant amounts of crystallizing materials were obtained that were analyzed using a multistep protocol. CRYSTAF and DSC analyses of the TREF fractions revealed the presence of components with large crystallizable sequences that had not been detected by the bulk samples analyses. HT‐HPLC provided a comprehensive separation and characterization of both the amorphous and the crystalline TREF fractions. The TREF fractions eluting at higher temperatures showed the presence of ethylene‐rich copolymers and PE homopolymer. In order to obtain additional structural information on the separated fractions, HT‐HPLC was coupled to Fourier transform‐infrared (FT‐IR) spectroscopy. The FT‐IR data confirmed that the TREF fractions were separated according to the ethylene contents of the eluted samples. Preparative TREF analysis together with a combination of various analytical methods proved to be useful tools in understanding the complex molecular composition of these rubber samples. © 2015 Wiley Periodicals, Inc. J. Polym. Sci., Part A: Polym. Chem. 2015 , 53, 863–874  相似文献   

14.
Linear polyethylene standards in the range of 1-500 kg/mol, dissolved in 1,2,4-trichlorobenzene, were injected into a column packed with oligo(dimethylsiloxane) modified silica gel. Fifteen polar solvents (cyclohexanone, cyclohexylacetate, cyclohexanol, nonylalcohol, dimethylformamide, dimethyl sulfoxide, ethylene- and diethylene glycol monobutyl ether, benzylalcohol, hexylacetate, bis(2-ethyl-hexyl)phthalate, N,N-dimethylacetamide, propylene carbonate, dipropylene glycol and N-methyl-pyrrolidone) were evaluated as mobile phases. Depending on the type of mobile phase evaluated, different elution behaviors are observed for polyethylene: (1) polyethylene was eluted in the size exclusion mode, (2) polyethylene was eluted together with the sample solvent peak at constant elution volume, (3) polyethylene was partially or fully retained on the column. The retained polymer was easily removed from the column by injecting a small volume of trichlorobenzene. The use of ethylene glycol monobutyl ether as the mobile phase enabled separation of the polyethylene from polypropylene. In this case polypropylene is eluted in the size exclusion mode, while polyethylene is eluted at a constant elution volume or remains in the column.  相似文献   

15.
Summary: Temperature rising elution fractionation (TREF) and crystallization analysis fractionation (CRYSTAF) fractionate semicrystalline polymers according to their crystallizabilities from dilute solution and have been widely used to measure the CCD of LLDPE. A new fractionation technique, known as crystallization elution fractionation (CEF), has been developed recently. The main difference between CEF and TREF and CRYSTAF is that the crystallization cycle in CEF is performed dynamically under solvent flow in a long column that contains an inert support material. In this paper, several metallocene-LLDPE resins have been analyzed by CEF to investigate the effect of cooling cycle parameters, comonomer fraction, polymer molecular weight, and blend cocrystallization on the fractionation. This new technique can be used to obtain CCDs with better resolution and in shorter times than TREF and CRYSTAF.  相似文献   

16.
Summary: Olefin block copolymers produced by chain shuttling catalysis exhibit crystallinity characteristics that are distinct from what would be expected for typical random olefin copolymers with comparable monomer compositions produced from either ‘single-site’ or heterogeneous catalysis. Olefin block copolymers produced by chain shuttling catalysis have a statistical multiblock architecture. A unique structural feature of olefin-based block copolymers is that the intra-chain distribution of comonomer is segmented (statistically non-random). Fractionating an olefin block copolymer by preparative temperature rising elution fractionation, TREF, results in fractions that have much higher comonomer content than comparable fractions of a random copolymer collected at an equivalent TREF elution temperature. We have developed a “block index” methodology which quantifies the deviation from the expected monomer composition versus the analytical temperature rising elution fractionation, ATREF, elution temperature. When interpreted properly, this index indicates the degree to which the intra-chain comonomer distribution is segmented or blocked. The unique crystallization behavior of block copolymers determine the magnitude of the block index values because the highly crystalline segments along an otherwise non-crystalline chain tend to dominate the ATREF (and DSC) temperature distributions.  相似文献   

17.
18.
Conventional analytical temperature rising elution fractionation (ATREF) is performed using slowly crystallized polymers in about 16 h. In this work, we developed a fast ATREF method in which the polymer sample is directly injected on the column at room temperature, thus reducing the analysis time to about 1 h. The method was tested using four metallocene polyethylenes with unimodal short chain branching distributions and different densities, previously analyzed by ATREF using a cooling rate of 0.1°C/min. The obtained results demonstrate that the fast ATREF method is very effective and accurate in evaluating short chain branching distribution for polyolefins having unimodal distributions.  相似文献   

19.
Thermally pretreated catalysts were prepared by heating MgCl2/THF/TiCl4 (TT-0) at 80°C for 5 min (TT-1) and 60 min (TT-2), and at 108°C for 5 min (TT-3) and 60 min (TT-4). Ethylene–1-hexene copolymers were prepared with these catalysts. The TT-1 catalyst produced more blocky and higher 1-hexene content polymer than TT-0, 2, 3, and 4. Temperature rising elution fractionation (TREF) analysis was used to investigate the chemical composition distribution of the ethylene–1-hexene copolymer, exhibiting bimodal distribution for TT-0 and trimodal for TT-1, 2, 3, and 4. A portion of higher hexene content of the copolymer markedly increased when the copolymerization was performed with TT-1, indicating that copolymerization active sites were newly generated. Portion of homopolyethylene increased drastically when the copolymerization was performed with TT-4, indicating that ethylene homopolymerization active sites were increased. Gel permeation chromatography (GPC) also revealed that three kinds of active sites existed on the catalyst. 13C-NMR spectrum of each fraction after TREF analysis suggested that the isospecific active site could polymerize 1-hexene well, resulting in random and alternating copolymers. A scheme for generation of the active site and change of its nature during thermal treatment of bimetallic complex catalyst is proposed. © 1998 John Wiley & Sons, Inc. J Polym Sci A: Polym Chem 36: 291–300, 1998  相似文献   

20.
This investigation of the autoxidation of ethylene–propylene copolymers and polyethylene–polypropylene mixtures was undertaken to determine whether reactivity is a linear function of composition. The copolymers and the mixtures were autoxidized in a trichlorobenzene solution at 100°C in the presence of 1,1′-azodicyclohexanecarbonitrile, and the rates of oxygen absorption were determined. The reactivity of the copolymers and the mixtures, after the underlying absorption of oxygen by initiator radicals is accounted for, is a nearly linear function of composition; however, the polymer mixtures and copolymers oxidized somewhat less readily than predicted by a straight line relationship. Several additional oxidations were performed on solutions of polypropylene so that the effects of initiation rate and substrate concentration could be evaluated. The oxidation kinetics of polypropylene even in dilute solution, are complex; titratable hydroperoxide yields are low. Further work will be required to specify the mechanism of oxidation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号