首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 921 毫秒
1.
先采用滴涂法制备了石墨烯修饰电极(GR/GCE),然后采用电化学方法将纳米金沉积于石墨烯表面制备了纳米金/石墨烯复合材料修饰电极(Au NPs/GR/GCE)。研究了异烟肼(isoniazid,INZ)在该Au NPs/GR/GCE上的电化学行为。结果表明,异烟肼在该修饰电极上有良好的电化学响应。在优化条件下,线性扫描伏安法测定异烟肼的线性范围为1.0×10-7~1.0×10-4mol/L,检出限为5.0×10-8mol/L(S/N=3)。用该法测定了异烟肼注射液中异烟肼的含量,结果令人满意。  相似文献   

2.
制备了金纳米粒子修饰玻碳电极(Au/GCE),用循环伏安法研究L-色氨酸(L-Trp)在修饰电极上的电化学行为,以及支持电解质、溶液p H、扫描速率等对L-Trp伏安响应的影响。实验表明:在p H=3.5的HAcNa Ac支持电解质中,L-Trp在Au/GCE上有一灵敏的氧化峰(Epa=0.93)。氧化峰电流与L-Trp浓度在5.0×10-7~1.0×10-4mol·L-1范围内呈良好的线性关系,相关系数为0.9990,检出限1.6×10-7mol·L-1。测得L-Trp样品平均回收率为98%。  相似文献   

3.
先采用滴涂法制备了石墨烯修饰电极(GR/GCE),然后采用电化学方法将纳米金沉积于石墨烯表面制备了纳米金/石墨烯复合材料修饰电极(Au NPs/GR/GCE)。研究了异烟肼(isoniazid,INZ)在该Au NPs/GR/GCE上的电化学行为。结果表明,异烟肼在该修饰电极上有良好的电化学响应。在优化条件下,线性扫描伏安法测定异烟肼的线性范围为1.0×10-7~1.0×10-4mol/L,检出限为5.0×10-8mol/L(S/N=3)。用该法测定了异烟肼注射液中异烟肼的含量,结果令人满意。  相似文献   

4.
利用长链离子液体特殊的性质,用其固定葡萄糖氧化酶(GOx)于Au/石墨烯电极表面组装成Nafion/GOx/[C10-mim+]Br-/Au/Gr修饰电极,然后用其测定葡萄糖。用透射电镜表征氧化石墨烯和Au/氧化石墨烯的形貌发现,金纳米颗粒很均匀的分散在石墨烯表面,并不存在团聚现象。电化学数据显示,Nafion/GOx/[C10-mim+]Br-/Au/Gr修饰电极对葡萄糖具有很好的催化作用,葡萄糖浓度在6.0×10-5~2×10-3mol/L范围内呈良好的线性关系(R=0.997),检出限为1.6×10-5mol/L。  相似文献   

5.
采用一步电化学共还原的方法将纳米金(AuNPs)、Nafion、电化学还原石墨烯(ERGO)修饰到玻碳电极(GCE)表面,制成修饰电极AuNPs/Nafion/ERGO/GCE。以扫描电镜对其进行表征,用循环伏安法和微分脉冲伏安法研究对苯二酚在该修饰电极上的电催化行为。优化了实验参数,对苯二酚在2.0~100μmol/L及100~800μmol/L浓度范围内与其氧化峰电流呈良好的线性关系,检出限为0.3μmol/L。用该修饰电极成功地进行了实际水样中对苯二酚含量的测定。  相似文献   

6.
本文构建了Nafion-聚溴甲酚绿-石墨烯纳米复合膜修饰玻碳电极(Nafion/PBG/GO/GCE)。研究表明,该复合膜修饰电极对NO的电化学氧化具有明显的催化作用。同时,该复合膜具有较大的比表面和较快的电子转移速率,从而建立了一种NO的高灵敏、快响应电化学传感方法。结果显示,NO在Nafion/PBG/GO/GCE上的氧化峰电流与其浓度在1.0×10^(-7)~2.25×10^(-4)mol/L范围内呈良好线性关系,其检出限为2.0×10^(-8)mol/L。此外,该传感器还具有良好的重现性、选择性和稳定性,可用于生物样品中NO含量的实时动态监测。  相似文献   

7.
本文采用滴涂法制备了还原氧化石墨烯/Nafion溶液修饰玻碳电极(rGO/Nafion/GCE),用电化学聚合法将L-半胱氨酸(L-Cys)聚合在rGO/Nafion/GCE表面,得到Poly-L-Cys/rGO/Nafion/GCE。采用伏安法研究了芦丁在该修饰电极上的电化学行为及其影响因素。结果表明,L-Cys的电聚合圈数对修饰电极的电化学性能具有一定的影响。在最优条件下,芦丁的峰电流与其浓度在2.0×10~(-8)~1.0×10~(-5) mol/L内呈现好的线性关系,检出限(S/N=3)为1.0×10~(-8) mol/L。  相似文献   

8.
MWCNTs-rGO/PDDA-AuNPs复合膜修饰电极对莱克多巴胺的灵敏检测   总被引:1,自引:0,他引:1  
采用自组装方法,将聚二烯丙基二甲基氯化铵(PDDA)功能化的金纳米颗粒(Au NPs)负载于多壁碳纳米管(MWCNTs)-还原型氧化石墨烯(r GO)夹层,再涂覆于玻碳电极(GCE)上,制备了纳米复合膜修饰电极MWCNTs-r GO/PDDA-Au NPs/GCE.采用透射电子显微镜(TEM)和紫外-可见光谱(UV-Vis)对修饰膜的形貌及结构进行表征.探讨了其对莱克多巴胺(Rac)的循环伏安行为,结果表明MWCNTs-r GO/PDDA-Au NPs纳米复合物对Rac表现出显著的电催化氧化特性.采用差分脉冲伏安法测得该复合膜修饰电极对Rac检测的线性范围为0.036~4.5μmol/L,检出限为6.35 nmol/L(S/N≥3),且显示出良好的抗干扰能力、稳定性及重现性.采用该方法检测猪血清及猪尿样中的Rac,回收率达95.4%~105.9%,表明该复合膜修饰电极对实际样品中Rac的检测具有潜在应用价值.  相似文献   

9.
利用Nafion(全氟聚苯乙烯磺酸溶液)-氧化石墨烯复合物、硫堇和纳米金构建了H2O2酶传感器。首先将氧化石墨烯分散在体积分数0.2%Nafion溶液中制得Nafion-氧化石墨烯的复合物,并将其固定在玻碳电极表面,通过静电吸附将带正电荷的硫堇吸附到Nafion-氧化石墨烯复合膜修饰的玻碳电极表面,再利用静电吸附将纳米金修饰于电极上,通过纳米金来固定辣根过氧化物酶从而制得H2O2传感器。用循环伏安法和计时电流法考察该修饰电极的电化学特性。H2O2浓度为5.5×10-6~1.0×10-3mol/L时,酶电极的响应电流值与H2O2的浓度呈良好的线性关系,检出限为1.80×10-6mol/L。  相似文献   

10.
采用电聚合方法制备三聚氰胺(MA)膜修饰玻碳电极(GCE),然后采用原位恒电位沉积法制备金纳米颗粒(Au),并将其修饰于膜电极表面,制得纳米金/三聚氰胺修饰玻碳电极(Au/MA/GCE)。用扫描电子显微镜(SEM)对修饰电极进行表面形貌和元素成分分析。用循环伏安法研究亚硝酸根(NO2-)在该修饰电极上的电化学行为发现,NO2-在0.85 V出现一灵敏的氧化峰。在优化的实验条件下,NO2-在1.0×10-5~1.0×10-3mol/L浓度范围内与其氧化峰电流成线性关系,检测下限为8.9×10-7mol/L。将修饰电极用于实际样品中NO2-的检测,效果良好。  相似文献   

11.
采用循环伏安(CV)、线性扫描伏安(LSV)和示差脉冲伏安(DPV)等方法研究了8-羟基脱氧鸟苷(8-OHdG)在壳聚糖(Chi)/石墨烯(GR)修饰的玻碳电极(GCE)上的电化学行为,8-OHdG在该修饰电极上氧化峰电流与其浓度在3.5×10-7~1.4×10-4mol/L范围内呈良好的线性关系,检测限为6.4×10-8mol/L(S/N=3)。将Chi/GR/GCE用于检测DNA氧化损伤,8-OHdG在修饰电极上的氧化峰电流与损伤的DNA质量浓度在10~300 mg/L范围内呈良好的线性关系,损伤DNA检出限为0.026 mg/L(S/N=3)。  相似文献   

12.
本文制备了氧化石墨烯-金纳米棒复合物(GO-GNRs).利用滴涂法制备了修饰电极(GO-GNRs/GCE),通过循环伏安法,还原了GO-GNRs复合物中的GO,制得电化学还原的石墨烯-金纳米棒修饰电极(ERGO-GNRs/GCE).研究了酒石黄在不同电极上的电流响应,结果表明,ERGO-GNRs/GCE对酒石黄的氧化有很好的电催化作用,其浓度在0.05~6.0μmol/L范围内与氧化峰电流呈良好的线性关系,检出限为15 nmol/L.利用ERGO-GNRs/GCE可完成样品中酒石黄含量的测定.  相似文献   

13.
将L-丝氨酸(L-Serine)电聚合到裸金电极表面,再将壳聚糖(CS)、纳米金(Nano-Au)、石墨烯(GO)混合液滴涂在L-丝氨酸修饰的金电极上,制成L-Serine/GO/Nano-Au/CS/Au/CME电化学传感器.考察了胞嘧啶在该传感器上的电化学行为,优化了实验条件.结果表明,该传感器对胞嘧啶有良好的选择性和灵敏度,胞嘧啶的浓度在1.0×10~(-7)~1.0×10~(-3)mol/L范围内与峰电流的减小量呈现良好的线性关系,检出限为3.2×10~(-8)mol/L(S/N=3).将该传感器应用于实际样品中测定胞嘧啶,结果令人满意.  相似文献   

14.
在石墨烯纳米片修饰电极(GN/GCE)上,通过电聚合的方法制备了新颖的桑色素/石墨烯复合修饰电极(M/GN/GCE).以多巴胺(DA)和抗坏血酸(AA)为模型化合物,运用循环伏安法(CV)和差示脉冲伏安法(DPV)考察了该复合修饰电极的电催化行为.在pH 7.0的PBS中,DA和AA分别在0.172 V和-0.183 V产生氧化峰,峰位差达355 mV.与单一修饰电极(桑色素修饰电极(M/GCE)、石墨烯修饰电极(GN/GCE)及裸玻碳电极(GCE))相比,DA在M/GN/GCE上的峰电流显著增大.在优化的实验条件下,DA在2.0×l0-8~5.5×10-4 mol/L浓度范围内与其峰电流具有良好的线性关系,检出限达9.0×10-9 mol/L.  相似文献   

15.
本文先在Au电极表面自组装硫辛酰胺(T-NH_2),再利用电化学还原的方法将还原氧化石墨烯(ERGO)和纳米金(AuNPs)电沉积到T-NH_2表面,采用循环伏安法考察了电极的电化学性能。实验表明,该修饰电极对多巴胺(DA)具有良好的电催化作用,优化条件下,DA的氧化峰电流与其浓度在6.49×10~(-6)~7.62×10~(-3) mol/L范围内呈良好的线性关系(R=0.996),检出限为2.0×10~(-6) mol/L。  相似文献   

16.
制备了纳米NiO-还原石墨烯复合修饰电极(NiO-rGO/GCE),并用于多巴胺(DA)的检测。用循环伏安法(CV)和差分脉冲伏安法(DPV)研究了DA在该修饰电极上的电化学行为。结果表明,在pH=7.0的磷酸盐缓冲溶液(PBS)中,该修饰电极对DA有良好的催化作用。DA浓度在5.0×10-7~3.2×10-5 mol/L范围内与氧化峰电流呈良好的线性关系,检出限为3.8×10-8 mol/L。用该修饰电极直接测定了血清中DA含量,回收率在97.8%~101.1%之间。  相似文献   

17.
用电沉积和滴涂的方法依次将L-半胱氨酸、纳米金、DNA、壳聚糖修饰在金电极表面,制备了稳定性、响应性良好的修饰电极(L-Cys/Au colloid/DNA/CS/Au/CME)。考察了影响实验结果的关键因素,确定了最佳实验条件,进一步采用循环伏安法和差分脉冲伏安法研究了布洛芬在L-Cys/Au colloid/DNA/CS/Au/CME上的电化学行为。在最佳实验条件下,当布洛芬浓度在1.0×10~(-7)~1.0×10~(-4) mol/L范围内时相应的氧化还原峰电流与浓度呈现良好的线性关系,检出限(S/N=3)达2.3×10~(-8) mol/L。结果表明,该修饰电极对布洛芬有良好的响应性能,据此建立了一种测定布洛芬的新方法。  相似文献   

18.
通过电聚合和电沉积方法首次制得聚(三聚氰胺)和金纳米粒共修饰的电极(PMel/Au/GCE),并对修饰电极进行交流阻抗电化学分析。采用循环伏安法研究了芦丁在修饰电极上的电化学行为,发现其氧化峰电流和还原峰电流较裸玻碳电极(GCE)以及聚(三聚氰胺)修饰的电极(PMel/GCE)明显增强,提高了检测的灵敏度。对溶液的pH值、金纳米粒子电沉积时间、三聚氰胺电聚合时间和扫描速率等实验条件进行了优化。采用示差脉冲伏安法对芦丁进行定量分析,芦丁浓度分别在7.8×10-9~1.2×10-6mol/L和1.2×10-6~1.5×10-5mol/L范围内与峰电流呈线性,其相关系数(r2)分别为0.997和0.993,检出限(S/N=3)为5.5×10-9mol/L。将该电极用于市售芦丁片检测,回收率为96.4%~101.8%。  相似文献   

19.
将氧化石墨烯(GO)、多壁碳纳米管(MWNTs)和羧甲基壳聚糖(CMCS)超声混合后滴涂到玻碳电极(GCE)基体上得到修饰电极(MWNTs/GO/CMCS/GCE),采用循环伏安法(CV)考察NO2-和L-色氨酸(L-Trp)在修饰电极上的电化学行为。计算得MWNTs/GO/CMCS/GCE的有效面积为3.243 0×10-6cm2,电极膜表面积明显增加,加速了电子转移,有利于被测物质的吸附和富集。结果表明:NO2-(在pH 4.7磷酸盐缓冲溶液中)和L-Trp(在pH 4.0乙酸-乙酸钠缓冲溶液中)在该修饰电极上分别有明显的电催化氧化作用;两者的浓度依次在1.0×10-7~3.5×10-1 mol·L-1和1.0×10-8~2.7×10-1 mol·L-1内与其相应的氧化峰电流值之间呈线性关系,其检出限(3S/N)依次为1.2×10-8,5.0×10-8 mol·L-1。方法用于腐败生菜中NO2-含量和模拟样品中L-Trp含量的CV测定,所得测定结果分别与紫外-可见分光光度法和荧光光度法的测定结果相符。  相似文献   

20.
采用电沉积法沉积铁氰化铈(CeHCF)纳米颗粒,在Nafion修饰的玻碳电极表面电沉积致密的、分散性良好的铁氰化铈纳米粒子。用场发射扫描电子显微镜(FE-SEM)对铁氰化铈纳米颗粒的形貌进行了表征。利用循环伏安法(CV)研究了多巴胺在铁氰化铈/Nafion修饰玻碳电极(CeHCF/NF/GCE)表面上的电化学行为。研究表明,CeHCF/NF/GCE对多巴胺具有良好的电催化氧化作用,该传感器对多巴胺在一定浓度下呈良好的线性关系,其线性范围是1.0×10~(-7)~3.4×10~(-4)mol/L。检测限为0.2×10~(-7)mol/L(S/N=3)。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号