首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
In this study we develop a theory of tracer diffusion in 2D lattice-gas systems with strongly repulsive nearest neighbor interactions. The study is performed for a square lattice in the vicinity of half monolayer coverage. In this case the lattice gas forms a highly-ordered c phase. The adatom kinetics is reduced to the problem of random walks of long-living structural defects. The correlated motion of tracer-defect pairs is considered. Equations for correlation functions of tracer-vacancy, tracer-excessive adatoms and tracer-dimer pairs are derived and solved in terms of microscopic jump probabilities of defects. The solutions are exact in the case of dominant single defect transport mechanisms. In the case of dimer transport we applied the approximation of short-range correlation length. The values obtained for the correlation factor are in good agreement with the results of computer simulations in the over-stoichiometric range, while for sub-stoichiometric coverages the agreement is not very good. Received 20 September 1999 and Received in final form 14 April 2000  相似文献   

2.
The electron-stimulated mobility and the electron-stimulated disordering of adsorbed particles is studied for a two-dimensional lattice gas model on a square lattice using kinetical Monte Carlo simulations. Pairwise nearest-neighbor repulsive interactions are considered which induce c(2 × 2) ordering of the lattice gas at low temperatures around half coverage. Adsorbed particles are allowed to perform thermally activated as well as electron-induced jumps to nearest-neighbor sites. The calculations are performed taking full advantage of the numerical power of a supermassive parallel computer.

It was found that the electron-induced mobility of adatoms causes the complete breakdown of the c(2 × 2) ordering at low temperatures if the fraction of electron-induced jumps exceeds a critical value. The breakdown of the ordering is accompanied by substantial changes of the chemical and tracer surface diffusion coefficients.  相似文献   


3.
First principles calculations of clean and adsorbate-covered surfaces of Si(001) and Ge(001) are reported. Chemical trends in the adsorption of ordered Na, K, Ge, As, Sb, S, Se and Cl overlayers are discussed. The calculations are based on the local-density approximation and employ non-local, norm-conserving pseudopotentials together with Gaussian orbital basis sets. The semi-infinite geometry of the substrate is properly taken into account by employing our scattering theoretical method. From total-energy minimization calculations we obtain optimal surface reconstructions which show asymmetric dimers for Si(001), Ge(001) and Ge:Si(001). For As:Si(001), Sb:Si(001) and Sb:Ge(001), we find symmetric adatom dimers in the equilibrium geometries. S or Se adlayers are found to be adsorbed in bridge positions forming a (1×1) unit cell with a geometry very close to the configuration of a terminated bulk lattice. Cl atoms adsorb on top of the dangling bonds of symmetric Si dimers residing in the first substrate-surface layer. Our calculations for Na:Si(001) and K:Si(001) confirm valley-bridge site adsorption for half monolayer coverage. For full monolayer alkali-metal coverage, adsorption in pedestal and valley-bridge positions is found to be energetically most favourable. The calculated optimal adsorption configurations are in excellent agreement with a whole body of recent experimental data on surface-structure determination. For these structural models, we obtain electronic surface band structures which agree very good with a wealth of data from angle-resolved photoemission spectroscopy investigations.  相似文献   

4.
D.R. Bowman 《Surface science》1983,130(2):348-360
A chain reaction mechanism is developed that can dramatically increase the predicted diffusion coefficient as a function of coverage for thermally activated submonolayer coverages of adsorbates weakly chemisorbed on surfaces. The key idea is that when a diffusing adatom encounters another adatom it will tend to forward scatter it (due to the channeling effect of the periodic potential of the substrate lattice) thus increasing the effective mean free path. The enhancement effect can be quite dramatic at large adsorbate coverages. The formalism is essentially that of a Markoffian random walk on a lattice which allows for “billiard ball” type collisions. A general formalism for calculating the chemical diffusion tensor for an unspecified lattice is developed. The diffusion tensor is then related to the effective diffusion coefficient measured by the field emission fluctuation method. The special case of the two-dimensional rhombic lattice with two adsorbate species is worked out and shown to agree qualitatively with theoretical predictions of the coverage dependence of the diffusion coefficient with the experimental data for hydrogen and deuterium on W(110)[1].  相似文献   

5.
动力学晶格蒙特卡洛方法模拟Cu薄膜生长   总被引:3,自引:1,他引:2  
利用动力学晶格蒙特卡洛方法模拟了Cu薄膜在Cu(100)面上的三维生长过程。模型中考虑了四个动力学过程:原子沉积、增原子迁移、双原子迁移和台阶边缘原子迁移,各动力学过程发生的概率由多体势函数确定。讨论了基底温度、沉积速率及原子覆盖率对Cu原子迁移、成核和表面岛生长等微观生长机制的影响;获得了Cu薄膜的表面形貌图并计算了表面粗糙度。模拟结果表明,随基底温度升高或沉积速率下降,岛的平均尺寸增大,数目减少,形状更加规则。低温时,Cu薄膜表现为分形的离散生长,高温时,Cu原子迁移能力增强形成密集的岛。Cu薄膜表面粗糙度随着基底温度的升高而迅速减小;当基底温度低于某一临界温度时,表面粗糙度随原子覆盖率或沉积速率的增大而增大;当基底温度超过临界温度时,表面粗糙度随原子覆盖率或沉积速率的变化很小,基本趋于稳定。  相似文献   

6.
We have investigated the formation and motion of copper adatoms and addimers on Ag(111) between 6 and 25 K with low-temperature scanning tunneling microscopy. The presence of atoms and dimers alters the motion of atoms and dimers via the long-range interaction mediated by the electrons in the two-dimensional surface state band. Above 16 K, dimers show quantum rotor behavior with altered rotational behavior in the presence of an additional adatom. The most favorable diffusional motion of the dimer is identified in combination with molecular dynamics calculations to be a zigzag out-of-cell motion starting above 24 K.  相似文献   

7.
The influence of surface reconstruction on diffusion of particles adsorbed on the surface is investigated in the framework of symmetrical four-position model. The analytical expressions for free energy and diffusion coefficients are obtained assuming the lateral interaction between particles is negligibly small.The critical behavior of the system is described by the Ising spin model. The coverage dependencies of the tracer, jump and chemical diffusion coefficients are calculated for some representative temperatures. The dependencies show clearly strong influence of the surface reconstruction on the thermodynamic and kinetic phenomena: diffusion coefficients become anisotropic on the reconstructed surface. To check the analytical results we have used Monte Carlo simulations of the diffusion on this lattice.  相似文献   

8.
Slow adatom diffusion on the periodic surface of the upper layer of a growing crystal that has not yet completely formed is considered. Island (cluster) motion is investigated as a factor that accelerates adatom diffusion and results in an entropy increase compared to the case of an already formed stationary substrate layer. The diffusion coefficient, entropy, and the effective temperatures that characterize these properties of the substrate have been introduced.  相似文献   

9.
The Enskog-Landau kinetic equation is considered to describe non-equilibrium processes of a mixture of charged hard spheres. This equation has been obtained in our previous papers by means of the non-equilibrium statistical operator method. The normal solution of this kinetic equation found in the first approximation using the standard Chapman-Enskog method is given. On the basis of the found solution the flows and transport coefficients have been calculated. All transport coefficients for multicomponent mixture of spherical Coulomb particles are presented analytically for the first time. Numerical calculations of thermal conductivity and thermal diffusion coefficient are performed for some specific mixtures of noble gases of high density. We compare the calculations with those ones for point-like neutral and charged particles. Received 10 June 1999 and Received in final form 15 October 1999  相似文献   

10.
Gu Xu 《Solid State Ionics》1992,50(3-4):345-347
The “vehicular effects” of chain segment motion on ionic diffusion in solid polymer electrolytes have been investigated via numerical simulation on a two-dimensional square lattice where the dynamical variation of chain configuration is presented by translational or rotational bond movement. It is found that (a) both types of bond motion promote continuous diffusion when the fraction (p) of available bonds is below the static percolation threshold of p=0.5 in two dimensions; (b) translational motion of bonds parallel to the direction of diffusion produces larger diffusion coefficients (D) than that by random renewal of the dynamic bond percolation model (DBPM), while the perpendicular motion or rotational motion gives smaller values of D; (c) Smooth lines instead of “stair-case like” curves generated by DBPM are obtained in the mean-squared displacement versus time plot, when bonds are shifting along the diffusion route. The dependence of diffusion coefficients on the variation of motion patterns of bonds is expected to be related to the temperature change under which these patterns are excited accordingly, such that VTF behavior of certain polymer electrolytes may be deduced.  相似文献   

11.
We investigate surface diffusion in a system of particles adsorbed on a two-dimensional strongly anisotropic lattice. There are two kinds of the lattice sites - ordinary sites and deep traps. Particles adsorbed in the ordinary sites can migrate over the surface, but particles adsorbed in traps are immobile. These particles do not move over the surface and they obstacle also the mobile particles migration (surface defects). Using kinetic Monte Carlo simulations we obtained coverage dependencies of the tracer, jump, and chemical diffusion coefficients. The coefficients are rather sensitive to the defect concentration. Even small admixture of the defects decreases drastically the fast diffusion. The effect is rather specific: strong dependence of the pre-exponential factor on the defect concentration and almost independent activation energy. The defect influence on the slow diffusion is weak. It results in strong decreasing of the surface diffusion anisotropy with the defect concentration. Such unusual behavior of the diffusion coefficients was observed in many experimental investigations of the surface diffusion of lithium, cesium, potassium, and strontium over strongly anisotropic W(1 1 2) and Mo(1 1 2) planes. It was shown that this specific behavior arises exclusively due to the surface anisotropy, and does not depend on the lateral interaction between the particles.  相似文献   

12.
13.
王永亮  张超  唐鑫  张庆瑜 《物理学报》2006,55(8):4214-4220
采用嵌入原子方法的原子间相互作用势,利用准静态分子动力学模拟研究了Cu原子在Cu(001)表面吸附所导致的基体晶格畸变以及对其附近的另一个吸附原子自扩散行为的影响.研究结果表明,吸附原子的存在可以导致多达10层的Cu基体晶格产生畸变.两个吸附原子所产生的晶格畸变应力场之间的相互作用,可以导致吸附原子运动活性的增加.通过比较同一路径上往返跳跃扩散势垒的差异发现,在原子间相互作用势的有效距离之外,两个吸附原子的扩散行为可以认为是存在晶格畸变应力场相互作用的两个独立吸附原子的扩散;在原子间相互作用势的有效距离之 关键词: 表面吸附原子 晶格畸变 表面二聚体 扩散  相似文献   

14.
We study the exact low energy spectra of the spin 1/2 Heisenberg antiferromagnet on small samples of the kagomé lattice of up to N=36 sites. In agreement with the conclusions of previous authors, we find that these low energy spectra contradict the hypothesis of Néel type long range order. Certainly, the ground state of this system is a spin liquid, but its properties are rather unusual. The magnetic () excitations are separated from the ground state by a gap. However, this gap is filled with nonmagnetic () excitations. In the thermodynamic limit the spectrum of these nonmagnetic excitations will presumably develop into a gapless continuum adjacent to the ground state. Surprisingly, the eigenstates of samples with an odd number of sites, i.e. samples with an unsaturated spin, exhibit symmetries which could support long range chiral order. We do not know if these states will be true thermodynamic states or only metastable ones. In any case, the low energy properties of the spin 1/2 Heisenberg antiferromagnet on the kagomé lattice clearly distinguish this system from either a short range RVB spin liquid or a standard chiral spin liquid. Presumably they are facets of a generically new state of frustrated two-dimensional quantum antiferromagnets. Received: 27 November 1997 / Accepted: 29 January 1998  相似文献   

15.
In this work the diffusion of non-interacting adsorbates on a random AB alloy surface is considered. For this purpose a simple cubic (sc), body-centered cubic (bcc) or face-centered cubic (fcc) auxiliary metal lattice is introduced. The auxiliary lattice is truncated parallel to its (100) plane in such a way that the fourfold hollow positions of the metal surface form a regular net of adsorption sites with square symmetry. The adsorption energy of each adsorption site is determined by its own environment, i.e. by the numbers of direct A or B neighbors. The Monte-Carlo method has been utilized to simulate surface diffusion of adsorbates on such energetically heterogeneous alloy surfaces and to calculate the tracer, jump and chemical diffusion coefficients. The chemical diffusion coefficient was calculated via two different approaches: the fluctuation and the Kubo-Green method. The influence of energetical heterogeneities on the surface diffusion is largely pronounced at low temperatures and low surface coverages, where most of the adatoms are trapped by deep adsorption sites. It was found that at low temperatures the sequential occupation of the different types of adsorption sites can be observed. Received: 24 October 1997 / Accepted: 17 December 1997  相似文献   

16.
利用Monte Carlo方法研究了基底显微结构对薄膜生长的影响. 对不同显微结构基底上薄膜生长的初始阶段岛的形貌和尺寸与薄膜覆盖度和入射粒子沉积速率之间的关系进行了模拟和分析. 模型中考虑了粒子沉积、吸附粒子扩散和蒸发等过程. 结果表明,基底显微结构对薄膜生长具有明显影响. 当沉积温度为300K、沉积速率为0.005ML/s(Monolayer/second,简称ML/s)、覆盖度为0.05ML时,四方基底上薄膜生长呈现凝聚生长. 随着覆盖度增加,岛的尺寸变大,岛的数目减少. 而对于六方基底,当覆盖度从0.05ML变化到0.25ML时,薄膜生长经历了一个从分散生长过渡到分形生长的过程. 无论是四方还是六方基底,随着沉积速率的增加,岛的形貌由少数聚集型岛核分布状态向众多各自独立的离散型岛核分布状态过渡.  相似文献   

17.
The diffusive motion of adsorbates on crystal planes is studied by means of a lattice gas model with stochastic dynamics, in the disordered phase and at half coverage. The diffusion coefficient and the time-correlation functions measured in field-emission experiments are calculated. These correlation functions are shown to have the proper hydrodynamic power law decay at long times. It is pointed out that if experiments are done at times before the onset of the hydrodynamic regime the value of the diffusion coefficient obtained will be too small. Our results show also that correlations among the adsorbed particles persist for times longer than predicted by a hydrodynamical approximation.  相似文献   

18.
(121/123)Sb nuclear quadrupole resonance and muon spin relaxation experiments of Mo_3Sb_7 revealed symmetry breakdown to a nonmagnetic state below the transition recently found at T_S approximately 50 K. The transition is characterized by a distinct lattice dynamics suggested from narrowing of nuclear fields. We point out that the Mo sublattice is a unique three-dimensional frustrated lattice where nearest-neighbor and next-nearest-neighbor antiferromagnetic interactions compete, and propose that tetragonal distortion to release the frustration stabilizes long-range order of spin-singlet dimers, i.e., valence bond crystal, which is thermally excited to the dynamic state with cubic symmetry.  相似文献   

19.
In the paper, elastic moduli of finite-sized graphene monolayers are computed in a nonsymmetric formulation using the lattice statics approach. The motion of atoms due to their interaction is not considered, lattice stability is not studied. The presence of covalent binding is assumed to preserve material structure and all atoms are assigned displacements that correspond to a homogeneous deformation gradient tensor. As a result, the deformation kinematics of graphene is strictly controlled and the material response is defined using a variant of the interatomic interaction potential of the Mie family. The dimensionless parameters of the potential are identified using the coincidence criterion of the experimentally determined Poisson ratio of graphene with an estimated value. The obtained potential parameters are used to determine the elastic properties of a graphene monolayer in a nonsymmetric formulation for low strains and low temperatures. It is shown that the graphene monolayer under homogeneous deformation goes to a nonequilibrium state. In order to provide the potential energy minimum of the specimen in the deformed state, it is necessary to assign displacements to a part of graphene atoms that form one of its “triangular” sublattices relative to atoms of another sublattice, with each sublattice being deformed homogeneously.  相似文献   

20.
We have previously considered the energetics and dynamics of ionic and orientational defects in the proton displacement pattern on a hydrogen-bonded chain at zero temperature. Here we examine thermal effects on ionic defect motion in such a chain. The chain is represented by a classical lattice hamiltonian and a modified tight-binding electronic hamiltonian. Temperature is incorporated using the Nose-Hoover method. We find that the threshold field for defect motion is reduced somewhat by temperature, as would be expected. The degree of reduction depends on whether the heavy-ion sublattice is taken to be stationary or mobile, but in either case the threshold fields at 200 K are still comparable to breakdown fields for reasonable values of the dielectric screening. Mobilities are on the order of 0.005 cm2/V s, well below the values initially observed by Eigen and de Maeyer, but consistent with more recent observations.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号