首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 329 毫秒
1.
The acid dissociation constant (pK a) is a key physicochemical parameter for characterizing active pharmaceutical ingredients (APIs). Early determination of pK a values is highly desirable in drug discovery, pharmaceutical process research and formulation design. To overcome the challenges of limited sample availability and potential low purity of API samples at early stages of drug development, as well as to increase sample analysis throughput, a multiplexed 96-channel capillary electrophoresis with UV detection was evaluated as a practical approach for high throughput pK a estimation of proprietary APIs in support of pharmaceutical research. Proprietary APIs with diverse structures were examined using the approach. The pK a values were successfully determined with good accuracy and precision. System robustness was demonstrated and analysis of at least eight samples can be completed within 1 h. A rapid pK a estimation procedure for marginally soluble APIs was proposed by performing single-point multiplexed CE–UV measurement without extrapolation using 10 or 20% methanol as co-solvent. Direct pK a estimation of APIs using DMSO solution samples and crude reaction samples containing a large amount of solvents and reagents and high level of impurities was also demonstrated using the multiplexed CE–UV approach.  相似文献   

2.
Biological monitoring and biomarkers are used in occupational toxicology for a more accurate risk assessment of occupationally exposed people. Appropriate and validated biomarkers of internal dose, like urinary metabolites, besides to be positively correlated with external exposure, have a predictive value to the risk of adverse effects. The application of liquid chromatography-mass spectrometry (LC-MS) in occupational and environmental toxicology, although relatively recent, has been demonstrated valid in the determination of traditional biomarkers of exposure, as well as in metabolism studies aimed at investigating minor metabolic routes and new more specific biomarkers. This review presents selected applications of LC-MS to the study of the metabolism of industrial chemicals, like n-hexane, benzene and other aromatic hydrocarbons, styrene and other monomers employed in plastic industry, as well as to other chemicals used in working environments, like pesticides used by farmers, and antineoplastic agents prepared by hospital personnel. Analytical and pre-analytical factors, which affect quantitative determination of urinary metabolites, i.e. sample preparation, matrix effect, ion suppression, use of internal standards, and calibration, are emphasized.  相似文献   

3.
Bioanalysis assays that reliably quantify biotherapeutics and biomarkers in biological samples play pivotal roles in drug discovery and development. Liquid chromatography coupled with mass spectrometry (LC–MS), owing to its superior specificity, faster method development and multiplex capability, has evolved as one of the most important platforms for bioanalysis of biotherapeutics, particularly new scaffolds such as half-life extension platforms for proteins and peptides, as well as antibody drug conjugates. Intact LC–MS analysis is orthogonal to bottom-up surrogate peptide approach by providing whole molecule quantitation and high-level sequence and structure information. Here we review the latest development in LC–MS bioanalysis of intact proteins and peptides by summarizing recent publications and discussing the important topics such as the comparison between top-down intact analysis and bottom-up surrogate peptide approach, as well as simultaneous quantitation and catabolite identification. Key bioanalytical issues around intact protein bioanalysis such as sensitivity, data processing strategies, specificity, sample preparation and LC condition are elaborated. For peptides, topics including quantitation of intact peptide vs. digested surrogate peptide, metabolites, sensitivity, LC condition, assay performance, internal standard and sample preparation are discussed.  相似文献   

4.
Analysis of drugs and metabolites in biological matrices such as blood or plasma by LC-MS is routinely challenged by the presence of large quantities of competing molecules for ionization in soft ionization sources, such as proteins and phospholipids. While the former can easily be removed by protein precipitation, pre-analytical extraction of the latter is necessary because they show very high retention in reversed-phase LC resulting in long analysis times or in ion suppression effects when not eluted before the next runs. A novel HILIC-based SPE approach, making use of silica cartridges and of acetone as organic solvent, is introduced as a potent alternative to current commercial methods for phospholipid removal. The methodology was developed and tested for a broad polarity range of pharmaceutical solutes (log P from 0 to 6.6) and broad applicability can therefore be envisaged.  相似文献   

5.
Extraction of endogenous compounds and drugs and their corresponding metabolites from complex matrices, such as biofluids and solid tissues, requires adequate analytical approach facilitating qualitative and quantitative analysis. To this end, solid‐phase microextraction has been introduced as modern technology that is capable of efficient and high‐throughput extraction of compounds due to its ability to amalgamate sampling, extraction, and pre‐concentration steps, while requiring minimal use of organic solvents. The ability of solid‐phase microextraction to enable analyses on small‐volume biological samples and growing availability of biocompatible solid‐phase microextraction coatings make it a highly useful technology for variety of applications. For example, solid‐phase microextraction is particularly useful for identifying biomarkers in metabolomics studies, and it can be successfully applied in pharmaceutical and toxicological studies requiring the fast and sensitive determination of drug levels, especially those that are present at low levels in biological matrices such as plasma, urine, saliva, and hair. Moreover, solid‐phase microextraction can be directly applied in in vivo studies because this extraction technique is non‐exhaustive and its biocompatible probes offer minimal invasiveness to the analyzed system. In this article, we review recent progress in well‐established solid‐phase microextraction technique for in vitro and in vivo analyses of various metabolites and drugs in clinical, pharmaceutical, and toxicological applications.  相似文献   

6.
Arylamines and aminopyridines form a class of potentially genotoxic impurities (PGIs) that can be present at trace levels in active pharmaceutical ingredients (APIs). A generic method was developed that allows the analysis of a selected set of these solutes at sub-ppm level relative to the drug substance. A highly concentrated solution of the pharmaceutical compound is analyzed by LC-MS using a single quadrupole mass spectrometer in the selected ion monitoring (SIM) mode. Since a number of target compounds show little or no retention in the reversed-phase LC setup, a fast and simple derivatization procedure using hexylchloroformate was applied. The amide derivatives of the PGI result in a higher molecular weight (more specific ion for SIM) and better chromatographic behavior. The methodology, consisting of a dual run on respectively a non-derivatized and a derivatized sample, was validated and applied to a selection of pharmaceutical substances. The method was found to be sufficiently sensitive and robust and is applicable in a QA/QC environment.  相似文献   

7.
This paper reviews the application of CE to the analysis of small-molecule pharmaceuticals. The areas of pharmaceutical analysis covered are enantiomer separation, the analysis of small molecules such as amino acids or drug counter-ions, pharmaceutical assay, determination of related substances and physicochemical measurements such as log P and pK(a) of compounds. The different electrophoretic modes available and their advantages for pharmaceutical analysis are described. Recent applications of CE for each subject area are tabulated with electrolyte details.  相似文献   

8.
In the pharmaceutical industry, studies of the metabolism and pharmacokinetics of drugs are important routine applications which require the analysis of the precursor drug and its metabolites in various biological matrices, such as plasma, serum, urine, cell culture media and tissue samples. In this study, two new and simple methods of sample preparation were optimized and validated: on the one hand, a column-switching technique with a restricted access material (RAM) was used to analyze biological fluids, and on the other hand, matrix solid-phase dispersion (MSPD) was applied to the extraction of analytes from tissue samples. Identification of the metabolites was done with a LC-MS system (ion trap in the MS(n)mode) coupled both on-line (RAM) and off-line (MSPD).Using the common calcium antagonist Verapamil, it is shown that these two methods allow rapid identification of phase I and phase II metabolites from biological samples and are suitable for pharmacokinetic and pharmacodynamic studies of pharmaceuticals in biological matrices.  相似文献   

9.
The identification and structure elucidation of drug metabolites is one of the main objectives in in vitro ADME studies. Typical modern methodologies involve incubation of the drug with subcellular fractions to simulate metabolism followed by LC-MS/MS or LC-MS(n) analysis and chemometric approaches for the extraction of the metabolites. The objective of this work was the software-guided identification and structure elucidation of major and minor buspirone metabolites using capillary LC as a separation technique and ion trap MS(n) as well as electrospray ionization orthogonal acceleration time-of-flight (ESI oaTOF) mass spectrometry as detection techniques.Buspirone mainly underwent hydroxylation, dihydroxylation and N-oxidation in S9 fractions in the presence of phase I co-factors and the corresponding glucuronides were detected in the presence of phase II co-factors. The use of automated ion trap MS/MS data-dependent acquisition combined with a chemometric tool allowed the detection of five small chromatographic peaks of unexpected metabolites that co-eluted with the larger chromatographic peaks of expected metabolites. Using automatic assignment of ion trap MS/MS fragments as well as accurate mass measurements from an ESI oaTOF mass spectrometer, possible structures were postulated for these metabolites that were previously not reported in the literature.  相似文献   

10.
Identification of drug metabolites can often yield important information regarding clearance mechanism, pharmacologic activity, or toxicity for drug candidate molecules. Additionally, the identification of metabolites can provide beneficial structure-activity insight to help guide lead optimization efforts towards molecules with optimal metabolic profiles. There are challenges associated with detecting and identifying metabolites in the presence of complex biological matrices, and new LC-MS technologies have been developed to meet these challenges. In this report, we describe the development of an experimental approach that applies unique features of the hybrid linear ion trap Orbitrap mass spectrometer to streamline in vitro and in vivo metabolite identification experiments. The approach, referred to as MSM, utilizes multiple collision cells, dissociation methods, mass analyzers, and detectors. With multiple scan types and different dissociation modes built into one experimental method, along with flexible post-acquisition analysis options, the MSM workflow offers an attractive option to fast and reliable identification of metabolites in different kinds of in vitro and in vivo samples. The MSM workflow was successfully applied to metabolite identification analysis of verapamil in both in vitro rat hepatocyte incubations and in vivo rat bile samples.  相似文献   

11.
An approach has been developed for drug metabolism studies of non-radiolabeled compounds using on-line liquid chromatography/tandem mass spectrometry (LC/MS/MS) combined with chip-based infusion following fraction collection. The potential of this approach, which improves the data quality compared with only LC/MS analysis, has been investigated for the analysis of in vitro metabolites of tolcapone and talinolol, two compounds with well-characterized metabolism. The information-dependent LC/MS/MS analysis enables the characterization of the major metabolites while the chip-based infusion is used to obtain good product ion spectra for lower level metabolites, to generate complementary MS information on potential metabolites detected in the LC/MS trace, or to screen for unexpected metabolites. Fractions from the chromatographic analysis are collected in 20 second steps, into a 96-well plate. The fractions of interest can be re-analyzed with chip-based infusion on a variety of mass spectrometers including triple quadrupole linear ion trap (QqLIT or Q TRAP) and QqTOF systems. Acquiring data for several minutes using multi-channel acquisition (MCA), or signal averaging while infusing the fractions at approximately 200 nL/min, permits about a 50 times gain in sensitivity (signal-to-noise) in MS/MS mode. A 5-10 microL sample fraction can be infused for more than 30 min allowing the time to perform various MS experiments such as MS(n), precursor ion or neutral loss scans and accurate mass measurement, all in either positive or negative mode. Through fraction collection and infusion, a significant gain in data quality is obtained along with a time-saving benefit, because the original sample needs neither to be re-analyzed by re-injection nor to be pre-concentrated. Therefore, a novel hydroxylated talinolol metabolite could be characterized with only one injection.  相似文献   

12.
Gumustas  Mehmet  Kurbanoglu  Sevinc  Uslu  Bengi  Ozkan  Sibel A. 《Chromatographia》2013,76(21):1365-1427

Liquid chromatography (LC) is a separation technique used in many different areas to aid the identification and quantification of substances in various matrices. LC techniques with various detection modes have been widely used for the sensitive and selective determination of trace amounts of pharmaceutical active compounds in biological samples and their dosage forms. A completely new system design with advanced technology has been developed, called ultra high performance liquid chromatography, which has evolved from high performance liquid chromatography. The application of LC methods to drug analysis introduces a powerful tool for therapeutic drug monitoring as well as for clinical research. The advantages of short turnaround time, method reliability, method sensitivity, and drug specificity justify the use of LC techniques for various groups of the drug active compounds. This review describes some of the principles of ultra high performance liquid chromatography and high performance liquid chromatography, validation of these methods, system suitability tests for the methods, and application of methods to pharmaceutical analysis in the last 3 years.

  相似文献   

13.
Liquid chromatography (LC) is a separation technique used in many different areas to aid the identification and quantification of substances in various matrices. LC techniques with various detection modes have been widely used for the sensitive and selective determination of trace amounts of pharmaceutical active compounds in biological samples and their dosage forms. A completely new system design with advanced technology has been developed, called ultra high performance liquid chromatography, which has evolved from high performance liquid chromatography. The application of LC methods to drug analysis introduces a powerful tool for therapeutic drug monitoring as well as for clinical research. The advantages of short turnaround time, method reliability, method sensitivity, and drug specificity justify the use of LC techniques for various groups of the drug active compounds. This review describes some of the principles of ultra high performance liquid chromatography and high performance liquid chromatography, validation of these methods, system suitability tests for the methods, and application of methods to pharmaceutical analysis in the last 3 years.  相似文献   

14.
The human gut microbiota is a functioning endocrine organ and stands at the intersection between dietary components and health or disease. There are very many microbial metabolites with numerous structures and functions arising from the gut microbial fermentation of foods and become signals for biological communication in the human body. These small molecules can be absorbed and delivered to distant organs through the circulatory system to build the gut–systemic axis. The gut microbial metabolomes are thus believed to play important roles in regulating cardiometabolic health and provide opportunities in mechanistic research and new drug discovery. Measurement of these novel microbial metabolites in clinical samples may serve as a tool for investigating disease biomarkers. In the past decade, the development of untargeted and targeted metabolomics approaches using NMR, LC/MS, and GC/MS has contributed to the exploration of gut microbial metabolomes in cardiometabolic health and disease. Some important targets are currently being translated into clinical applications. In this review article, we introduce an oral carnitine challenge test developed as an example to demonstrate the potential applications in personalized nutrition based on the function of gut microbiota. It is a method taking the gut microbiota as a bioreactor and provides fermentable materials as inputs and measures the outputs of targeted microbial byproducts in the blood or urine. This challenge test may be extended to measure metabolites from microbial fermentation related to other endocrinological or inflammatory diseases. We review current gut metabolome research approaches and propose a gut microbial functional measurement using a challenge test. We suggest that the maturation in measuring gut microbial metabolites may provide an important piece to complete the puzzle of precision medicine.  相似文献   

15.
Chromatographic analyses play an important role in the identification and determination of phase I and phase II drug metabolites. While the chemical standards of phase I metabolites are usually available from commercial sources or by various synthetic, degradation or isolation methods, the phase II drug metabolites have usually more complicated structures, their standards are in general inaccessible and their identification and determination require a comprehensive analytical approach involving the use of xenobiochemical methods and the employment of hyphenated analytical techniques. In this work, various high-performance liquid chromatography (HPLC) methods were employed in the evaluation of xenobiochemical experiments leading to the identification and determination of phase II nabumetone metabolites. Optimal conditions for the quantitative enzymatic deconjugation of phase II metabolites were found for the samples of minipig bile, small intestine contents and urine. Comparative HPLC analyses of the samples of above-mentioned biomatrices and of the same biomatrices after their enzymatic treatment using beta-glucuronidase and arylsulfatase afforded the qualitative and quantitative information about phase II nabumetone metabolites. Hereby, three principal phase II nabumetone metabolites (ether glucuronides) were discovered in minipig's body fluids and their structures were confirmed using liquid chromatography (LC)-electrospray ionization mass spectrometric (MS) analyses.  相似文献   

16.
Monitoring of pesticides and veterinary drug residues is required to enforce legislation and guarantee food safety. Liquid chromatography-mass spectrometry (LC-MS) is the prevailing technique for assessing both types of residues because LC offers a versatile and universal separation mechanism suitable for non-gas chromatography (GC) amenable and the majority of GC-amenable compounds. This characteristic becomes more relevant when LC is coupled to MS because the high sensitivity and specificity of the detector allows to apply generic sample preparation procedures, which simultaneously extract a wide variety of residues with different physico-chemical properties. Determination of metabolites and degradation products, non-target suspected screening of an increasing number of residues, and even unknowns identification are also becoming inherent LC-MS advantages thanks to the latest advances. For routine analysis and, in particular, for official surveillance purposes in food control, analytical methods properly validated following strict guidelines are needed. After a brief introduction and an outline of the legislation applicable around the world, aspects such as improvement of specificity of high-throughput methods, resolution and mass accuracy of identification strategies and quantitative accuracy are critically reviewed in this article. In them, extraction, separation and determination are emphasized. The main objective is to offer an assessment of the state of the art and identify research needs and future trends in determining pesticide and veterinary drug residues in food by LC-MS.  相似文献   

17.
Stability is an important pre-analytical variable for quantitative LC-MS/MS analysis of drug molecules and/or their metabolites in biological matrices. Instability of an analyte in any stage of the bioanalytical process, including sample collection, processing, storage, extraction and LC-MS/MS analysis, can result in under-/over-estimation if an adequate preventive procedure is not in place. In the current review on practical strategies in quantitative LC-MS/MS bioanalysis of unstable small molecules, the common causes of analyte instability were examined. The instability of some analytes is readily predictable because of the presence of certain chemically or biologically labile moieties in the molecules or because the compounds are in an inter-convertible form, e.g. lactone vs hydroxyl carboxylic acid. However, the instability of many other analytes is not readily predictable. Necessary evaluation needs to be conducted to identify the possible instability issues. The current review highlighted some general considerations and specific approaches for developing a robust LC-MS/MS method. In particular, incurred samples should be used as part of routine short-term stability assessment of any unstable analyte during the early stages of method development and validation. This can help unveil any 'hidden' instability issues that, if left unaddressed, could lead to the invalidation of a 'validated' method.  相似文献   

18.
The widely different LC-MS response observed for many structurally different compounds limits the use of LC-MS in full scan detection mode for quantitative determination of drugs and metabolites without using reference standard. The recently introduced nanospray ionization (NSI) technique shows comparable MS response for some compounds under non-LC-MS conditions. However, in the presence of numerous endogenous compounds commonly associated with biological samples such as urine, plasma, and bile, LC-MS is required to separate, detect, identify, and measure individual analytes. An LC-NSI-MS system was devised and the MS response obtained in this system for a variety of pharmaceutical drugs and their metabolites. The set-up involves two high-performance liquid chromatography (HPLC) systems, a chip-based NSI source and a quadrupole-time-of-flight (Q-TOF) mass spectrometer. Herein this is referred to as the response normalized-liquid chromatography NSI-MS (RNLC-NSI-MS) system. One HPLC unit performs the analytical separation, while the other unit adds solvent post-column with an exact reverse of the mobile phase composition such that the final composition entering the NSI source is isocratic throughout the entire HPLC run. The data obtained from four different structural classes of compounds [vicriviroc (VCV), desloratadine (DL), tolbutamide, and cocaine] and their metabolites indicate that by maintaining the solvent composition unchanged across the HPLC run, the influence of the solvent environment on the ionization efficiency is minimized. In comparison to responses obtained from radiochromatograms, responses from conventional LC-ESI-MS overestimated the VCV and DL responses, respectively, by 6- and 20-fold. Although VCV and DL responses obtained using LC-NSI-MS are within 2- to 6-fold from the respective radiochromatographic responses, the response normalization modification results in nearly uniform LC-NSI-MS response for all compounds evaluated.  相似文献   

19.
The study of the metabolic fate of drugs is essential for the safety assessment of new compounds in the drug development process. However, the characterization and structural elucidation of metabolites from in vivo experiments is still a very challenging task. In this paper, we compare a two-dimensional liquid chromatography/mass spectrometry (LC/MS) approach using either a capillary LC/MS system or the recently introduced chip-based nanoelectrospray/MS system (Nanomate) as the second dimension for structural elucidation of metabolites by MS. More than 30 radioactive fractions of a chromatographic separation from a human urine sample were analyzed and 54 metabolites could be identified. The long persisting and stable nanoelectrospray enabled the search for unknown metabolites by precursor-ion scanning experiments followed by product-ion scanning experiments of potential metabolites using a quadrupole time-of-flight (qTOF) mass spectrometer. The number of fragments produced by nanoelectrospray with product-ion scanning was significantly higher compared to LC/MS experiments with in-source fragmentation. Therefore, the assignment of possible modifications in metabolites to certain moieties of the drug could be investigated with higher accuracy. The capillary LC/MS system for the second dimension was more sensitive in the case of low abundant metabolites. These metabolites could not be detected by direct nanoelectrospray infusion, which limits the application of the Nanomate for trace metabolites.  相似文献   

20.
A versatile procedure has been developed and validated for the determination of triphenylphosphine oxide (TPPO) at low levels in various active pharmaceutical ingredients (APIs). This procedure incorporates the use of the novel hollow-fiber liquid-phase microextraction (LPME) for the measurement of this potential process-related impurity in aqueous solutions of APIs. A small volume (40 microL) of 1-octanol contained within a hollow polypropylene fiber is used for the extraction of TPPO from low pH aqueous API solutions. More than a 100-fold increase in the TPPO concentration is obtained without additional evaporation of the extract. Experimental parameters of the extraction procedure were investigated to optimize extraction efficiency and minimize sample matrix interference. Using HPLC/UV as the end analysis technique, the procedure was validated for TPPO in the concentration range of 3-16 microg/L with an API present at 1500 mg/L. The versatility of the method was demonstrated by applying the procedure to the analysis of APIs with different molecular structures. This simple LPME procedure is inexpensive and offers appropriate sensitivity for the intended use while providing several advantages over other analysis methods for pharmaceutical samples.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号