首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
为了实现光纤宏弯温度传感,对单模光纤宏弯损耗的温度响应特性进行了理论与实验研究.理论上对单模光纤宏弯损耗理论公式进行了温度修正.基于该公式模拟了波长、弯曲半径以及温度对纤芯-无限包层结构单模光纤宏弯损耗性能的影响.设计制作了一种带吸收层和镍保护层的单模光纤宏弯温度传感探头并进行了温度传感性能实验测试.结果表明:纤芯-无限包层结构单模光纤宏弯损耗对弯曲半径、波长和温度变化较为敏感,与温度之间的响应呈线性,该探头的温度分辨率为0.4℃;通过减小弯曲半径和提高光源波长,可进一步提高其温度灵敏度和分辨率.该结构光纤可近似看作纤芯-无限包层结构光纤,用于开发光纤宏弯温度传感器.  相似文献   

2.
光纤传感是现代光纤技术的重要应用之一。制作了一种基于两个单模光纤粗锥串接的全光纤型马赫-曾德尔高温高灵敏温度传感器。纤芯中传输的光通过第一个光纤锥耦合, 一部分进入纤芯传输,另一部分进入包层形成包层模,纤芯模和包层模具有不同的有效折射率,经过干涉臂的传输产生了光程差。纤芯和包层传输的光再经过第二个光纤锥耦合,形成干涉进入输出光纤传输。对不同长度的传感器进行实验研究,得出传感臂长度与干涉周期之间的关系。研究了传感器温度响应特性,给出了温度响应灵敏度。实验结果表明,在30~400 ℃温度范围内,长度为35 mm的传感器可以得到较高的温度响应灵敏度,其响应灵敏度为0.115 nm·℃-1。利用傅里叶变换对传感器透射谱进行了分析,可以确定在长度为35 mm的传感器中仅有基模LP01和高阶模LP08两种模式,透射谱就是由这两种模式干涉形成的。该传感器体积小、精度高、抗电磁干扰,具有易于制作、对比度大、质轻、灵敏度高、耐高温等优点。可用于高温气体温度测量及油气井测井等领域的高灵敏度温度传感测量。  相似文献   

3.
提出了一种基于包层模谐振的光纤温度传感器. 它是通过将三包层石英特种光纤(TCQSF)两端分别与普通单模光纤(SMF)电弧熔接构成的SMF-TCQSF-SMF结构. 根据耦合模理论, 首先将TCQSF等效为三个同轴波导, 按各波导模场的分布特点标量计算其传输模式的色散曲线, 并深入研究其耦合长度与传输谱线之间的关系; 其次根据光纤的热光效应及热膨胀效应, 分析计算该传感器的温度灵敏度; 最后选取耦合长度为一个拍长时的传感器进行温度传感实验. 实验结果表明, 在35-95 ℃的温度变化范围内, 其温度灵敏度为73.74 pm/℃, 与理论计算结果一致. 因此, 该传感器具有结构简单、制备容易、灵敏度高、包层模激发可控等优点, 可用于工业生产、生物医学等温度传感领域.  相似文献   

4.
设计了一种基于双芯光纤耦合效应和游标效应的高灵敏度温度传感器,传感器是由2个相差一定长度的双芯光子晶体光纤和单模光纤级联构成。双芯光子晶体光纤通过级联实现游标效应,同时对纤芯中间的气孔填充乙醇实现温度传感。仿真结果表明,该温度传感器在35 ℃~45 ℃范围内的平均温度灵敏度可达?20.37 nm/℃。与单纯依靠双芯光子晶体光纤能量耦合效应的传感器相比,该传感器的温度检测灵敏度提高了10倍。  相似文献   

5.
施伟华  尤承杰  吴静 《物理学报》2015,64(22):224221-224221
利用光子晶体光纤结构的灵活性和性能的优越性, 设计了一种基于D形光子晶体光纤的折射率和温度传感器. 在D形光子晶体光纤表面抛磨并镀上金纳米薄膜, 作为表面等离子体共振传感通道用来测量液体折射率; 在包层的一个空气孔中填充温敏液体甲苯, 作为定向耦合通道实现对温度的测量. 进一步的数值计算发现, 基于定向耦合效应的温度传感和基于表面等离子体共振的折射率传感相互独立, D形光子晶体光纤同时进行折射率和温度传感检测. 在各向异性的完美匹配层边界条件下利用全矢量有限元法对该传感器特性进行了数值研究, 发现D形光子晶体光纤的空气孔直径决定了定向耦合吸收峰的中心波长和温度传感的灵敏度, 金薄膜的厚度和D形结构的抛磨深度仅影响表面等离子体共振峰的相对强度. 结果表明: 该传感器在-10–80 ℃的温度范围内具有11.6 nm/℃的温度灵敏度, 在1.34–1.44折射率范围内折射率灵敏度最高可达26000 nm/RIU.  相似文献   

6.
提出一种基于Sagnac干涉原理的光纤传感器,并将其用于温度和应变的环境检测。实验中,选用乙醇溶液填充前后的保偏光子晶体光纤(PM-PCF)作为传感单元。首先,将未填充乙醇溶液的PM-PCF熔接到Sagnac干涉环路中,依靠PM-PCF基底材料的光热效应和光弹性效应,分别在26~50℃温度范围内和0~900μ?应变范围内,实现了-1.72 nm/℃的温度传感灵敏度和35.35 pm/μ?的应变灵敏度。然后,利用氮气加压装置,将乙醇溶液填充到PM-PCF包层空气孔内。这是利用功能材料的外场调谐作用来增强Sagnac干涉仪的传感性能。填充乙醇溶液后,该传感器的温度灵敏度达到-2.66 nm/℃,约为原始PM-PCF温度灵敏度的1.55倍。所提出的用于温度和应变测量的Sagnac干涉传感器结构较为简单,具有良好的迟滞性,对提升光纤传感灵敏度具有一定的借鉴意义。  相似文献   

7.
分析和阐释了POF光纤的包层模受抑全内反射(CMFTIR)效应及其传感机制。提出利用光纤宏弯导致模场畸变从而激发光纤包层模式的方法获得显著的CMFTIR效应并利用其实现液位传感。实验表明CMFTIR效应相对微弱,极易淹没于强背景噪声中,为此通过噪声分析提出利用宏弯耦合获得暗场信号以进一步提升信噪比。设计了双绞宏弯耦合型液位探头及其封装结构。实验结果表明,暗场耦合信号具有明显的信噪比优势,实现传感器液位区分度大于3.7 dB。相较于同类液位探头,该传感器鲁棒性好,制作更加简单且成本更为低廉。  相似文献   

8.
《量子光学学报》2021,27(3):227-234
为了提高温度传感器的灵敏度,本文提出了基于纳米材料封装的干涉型微纳光纤温度传感器。该传感器通过熔融拉锥光敏光纤得到微纳光纤,用毛细管封装后填充高热光系数氮化硼分散液,并用紫外胶封装防止氮化硼挥发。当微纳光纤直径越小时,倏逝场越强,与外界环境的相互作用也会增强,但在灵敏度与稳定性之间平衡折中,实验中选择直径为12.3μm的微纳光纤。氮化硼分散液随温度变化折射率变化大,即对温度变化更敏感,通过传输光谱的漂移来检测温度响应。实验结果表明,随着温度的升高,透射光谱向波长更短的方向移动。无纳米材料封装的温度传感器灵敏度为-0.0297 nm/℃,氮化硼分散液封装之后灵敏度最高可达-0.2878 nm/℃,大约为无纳米材料封装传感器灵敏度的十倍左右。氮化硼分散液的浓度对实验温度灵敏度的影响十分微弱。该传感器具有结构小巧轻便,成本低,机械性高等优势,而且纳米材料封装可保护微纳光纤免受环境变化造成的形变以及外界杂质对传感部分的污染,保证实验的准确性。该传感器在温度传感领域具有重大发展潜力。  相似文献   

9.
提出了一种基于包层模谐振的光纤温度传感器.它是通过将三包层石英特种光纤(TCQSF)两端分别与普通单模光纤(SMF)电弧熔接构成的SMF-TCQSF-SMF结构.根据耦合模理论,首先将TCQSF等效为三个同轴波导,按各波导模场的分布特点标量计算其传输模式的色散曲线,并深入研究其耦合长度与传输谱线之间的关系;其次根据光纤的热光效应及热膨胀效应,分析计算该传感器的温度灵敏度;最后选取耦合长度为一个拍长时的传感器进行温度传感实验.实验结果表明,在35—95℃的温度变化范围内,其温度灵敏度为73.74 pm/℃,与理论计算结果一致.因此,该传感器具有结构简单、制备容易、灵敏度高、包层模激发可控等优点,可用于工业生产、生物医学等温度传感领域.  相似文献   

10.
《光学学报》2021,41(9):27-35
提出了一种基于表面石墨烯修饰的锥形多模光纤温度传感器。它由两段普通单模光纤(SMF)之间熔接一段锥形多模光纤(TMMF)构成,并通过液相转移法转移石墨烯薄膜至锥形多模光纤表面。石墨烯与锥形光纤光场相互作用,当外界温度发生改变,表面石墨烯修饰的锥形多模光纤所形成的复合波导的有效折射率随之变化,最终导致其光传输损耗发生变化,实现温度传感。实验结果表明:石墨烯可以有效提升锥形多模光纤的温度传感能力。在20~90℃温度范围内,束腰直径为9.95μm的表面石墨烯修饰的锥形多模光纤(SG-TMMF)最高能达到0.1589 dB/℃的损耗灵敏度,线性度为0.984,同时,传感器还具有较好的可逆性。该传感器制作简单,灵敏度高,在科学研究和工农业生产的温度测量场合具有较好的应用前景。  相似文献   

11.
张琪  周骏  陈金平  谭晓玲 《光子学报》2013,42(3):307-310
提出并制作出一种基于锥体光纤-长周期光纤光栅-锥体光纤结构的全光纤Mach-Zehnder(M-Z)干涉仪传感器,并对其温度传感特性进行了研究.实验结果表明,固定光纤锥体和长周期光纤光栅的结构,仅改变两个光纤锥体之间的距离,对应不同的M-Z干涉谐振峰呈现出不同的温度传感特性:随着两个光纤锥体之间的距离增加,位于短波长处的谐振峰,传感器的温度灵敏度减小,而位于长波长处的谐振峰,传感器的温度灵敏度增加.当传感器长度为16.5 cm时,在1 680 nm附近的温度灵敏度达到0.102 06 nm/℃.实验结果对于锥体光纤-长周期光纤光栅组合型温度传感器的优化设计具有重要参考价值.  相似文献   

12.
为提高Sagnac型温度传感器的测温范围和灵敏度,提供了一种具有高双折射高温度灵敏度特性的光子晶体光纤设计方法。通过在光纤空气孔内填充温敏液体材料,使光纤具有良好的温敏特性。在COMSOL中建立该光子晶体光纤的电磁场模型并对光纤特性进行分析计算,利用有限元法分析结构参数对双折射和光纤双折射温度灵敏度的影响,并在所确定结构基础上研究了温敏液体的填充方式和填充液体类型对光纤温敏特性的影响。确定了最优的结构和液体填充方式,最优情况下该光纤的双折射温度灵敏度能够达到2.050 7×10-5/℃,在1 550 nm处可获得5.96×10-2的双折射。将2 mm光子晶体光纤应用于Sagnac型温度传感器中并进行传感性能仿真分析,利用多项式拟合的方法对结果数据进行拟合以分析传感器的温度灵敏度,提高拟合准确性、减小测量误差。结果表明在0~75℃范围内传感器平均灵敏度可达11.28 nm/℃,与现有典型Sagnac型温度传感器相比,本文Sagnac型温度传感器在尽量减小光纤长度的基础上获得了较高的温度灵敏度,并且测温范围更大、准确性更高。因此,该传感器在温度测...  相似文献   

13.
通过将一段长为17 mm的多模光纤两端分别与单模光纤对芯熔接,然后对多模光纤部分进行拉锥处理,得到一种波长和强度同时对温度响应的锥形多模光纤温度传感器。实验研究了30 ℃~80 ℃范围内传感器的温度传感特性。实验结果表明:当环境温度发生变化时,该传感器在1 542 nm附近干涉波谷的波长和强度对温度的响应灵敏度分别可达到0. 041 nm/℃和0. 106 dB/℃,并且传感器干涉条纹的波长响应和强度响应之间呈良好的线性关系。基于传感器波长响应与强度响应之间的该线性关系,通过传感信号强度的检测即可实现干涉型光纤传感器的相位解调,该方法为传感解调信号提供了新思路,具有重要的参考价值。  相似文献   

14.
袁宏伟  何巍  张雯  祝连庆 《光学技术》2019,45(3):297-302
提出并设计了基于侧边抛磨传感臂结构的光纤Mach-Zehnder干涉结构,并对其温度传感特性进行了研究。通过将两支分光比为50∶50的1×2端口光纤耦合器相对熔接,构建光纤Mach-Zehnder干涉结构,采用单模光纤作为干涉结构的参考臂。基于侧面研磨技术在3m长纤芯/包层尺寸为9/125μm的单模光纤上进行抛光,抛光时长为5h,制备了研磨长度为20mm、深度为50μm的光泄露窗作为干涉结构的传感臂,提高传感器的灵敏度。采用宽带光源对Mach-Zehnder干涉结构的透射光谱进行测试,干涉周期为0.66nm。实验中对传感结构进行了温度测试及分析,选取波谷位置为1551.48nm作为测试点。在25~60℃的升温范围内干涉条纹向长波方向移动3.97nm,传感器的温度灵敏度为115.4pm/℃。不同温度下对应波谷的波长位移量与外界温度呈现良好的线性关系,线性度为0.9940,功率漂移小于1.66dB,具有较好的功率稳定性。  相似文献   

15.
为了提高特殊截止单模光纤的弯曲可靠性,采用气相沉积工艺制作了包层直径80μm碳涂覆的特殊截止单模光纤,测试了光纤的截止波长、模场、衰减谱、宏弯、色散等传输性能和应力腐蚀敏感性参数。测试结果表明光纤截止波长小于915nm,能够实现915nm以上波长单模工作,在常用的几个波段具有较低的传输损耗,光纤的零色散波长红移到1 670nm。采用碳涂覆工艺提高光纤的应力腐蚀敏感性参数达到35,结合小包层直径预期可以提高光纤的使用寿命。  相似文献   

16.
提出并制备了一种基于本征倏逝波原理的温度及葡萄糖溶液浓度传感器.通过研究腐蚀包层厚度与透射光谱之间的关系,确定较为合适的腐蚀厚度.将标准单模光纤包层腐蚀至2.4μm,利用光纤倏逝波对外界介质变化敏感的原理,通过测量输出光功率的变化量实现温度及葡萄糖溶液浓度传感.实验结果表明:传感器在1070℃的温度范围内具有9.58×10~(-3) dBm/℃的灵敏度,线性度达到99.36%;在葡萄糖溶液03%的浓度范围内具有0.126dBm/(g/L)的灵敏度,线性度达到97.95%.该传感器的响应时间小于30s,具有操作简便、测量准确度高、重复性好、适用范围广等优点,具备良好的应用价值.  相似文献   

17.
设计和制作了一种基于单模多模细芯单模光纤马赫曾德尔(Mach-Zehnder)干涉仪结构,可同时测量折射率和温度的传感器。该传感器中,多模光纤和细芯单模熔接点充当光耦合器。导入光纤中传输的光经多模光纤后在细芯光纤的纤芯和包层中激发出纤芯模和包层模,不同模式光在细芯光纤中传输时将产生光程差,再经细芯单模熔接点耦合成为导出光纤的纤芯模而干涉。传感器透射光谱随着环境折射率和温度的变化发生漂移,通过监测不同级次的干涉谷可实现折射率和温度的同时测量。通过对传感器的透射光谱进行傅里叶变换分析可知该透射光谱主要由LP01模和LP16模干涉形成。该传感器透射光谱中1535nm附近干涉谷的折射率和温度响应灵敏度的理论值分别为-55.90nm/RIU和0.0501nm/℃(其中RIU为折射率单位);1545nm附近干涉谷的折射率和温度响应灵敏度的理论值分别为-56.26nm/RIU和0.0505nm/℃。在折射率和温度的变化范围分别为1.3449~1.3972和20℃~90℃的环境中对传感器的响应特性进行实验研究,结果表明:透射光谱中1535nm附近干涉谷的折射率和温度响应灵敏度分别为-53.03nm/RIU和0.0465nm/℃;1545nm附近干涉谷的折射率和温度响应灵敏度分别为-54.24nm/RIU和0.0542nm/℃。理论分析与实验结果相一致。该传感器在生物医学领域有较好的应用前景。  相似文献   

18.
基于Michelson干涉仪的高灵敏度光纤高温探针传感器   总被引:2,自引:0,他引:2       下载免费PDF全文
提出了一种简单的高灵敏度的光纤高温探针传感器, 该传感器由一小段多模光纤和一端镀有银膜的单模光纤熔接而成. 由于单模光纤和多模光纤的纤芯直径不同, 当光波从多模光纤传输至多模光纤和单模光纤的熔接端面时, 一部分纤芯光耦合进包层, 因为单模光纤纤芯的折射率和包层的折射率不同, 不同模式的光经过银膜反射后在多模光纤内重新耦合进单模光纤, 最终形成干涉.随着外界温度的升高, 干涉谱峰值会向长波方向漂移. 实验结果证明这种传感器在470 ℃–600 ℃范围内具有很好的稳定性, 线性度达99.7%, 灵敏度为120 pm/℃, 可作为远距离反射型探针温度传感器, 在石油探测和油气田开发等领域有着广泛的应用前景. 关键词: 光纤传感 温度测量 Michelson干涉  相似文献   

19.
为了实现温度和应变同时测量,本文设计了一种基于多模干涉的光纤温度和应变传感器.该传感器利用光纤熔接机将一段细保偏光纤和一段细芯光纤错位熔接后引入萨格纳克环中而制成.由于光纤错位和模场失配,传感器内存在偏振模干涉和纤芯模-包层模干涉.对不同温度和应变作用下采集到的传感器透射谱进行滤波处理,可提取两种干涉对应的透射谱.基于透射谱中两个不同波谷的温度和应变灵敏度建立同时测量矩阵,即可实现温度和应变的同时测量.实验数据显示该传感器的温度和应变分辨率分别为0.30℃和13.50με.本实验可以作为物理和光电相关专业本科生物理创新实验,帮助大学生掌握光纤传感原理、实验技能和数据处理与分析方法.  相似文献   

20.
含耐高温涂覆层长周期光纤光栅的温度特性研究   总被引:1,自引:1,他引:0  
孙伟胜  施解龙  陈园园  杨清 《光子学报》2014,40(10):1490-1493
利用逐点写入法在耐高温光纤中用红外飞秒激光直接写入了长周期光纤光栅,研究了光栅的高温温度特性,并做了理论分析.通过对含耐高温涂覆层的长周期光纤光栅进行20 ℃~300 ℃的温度传感实验,结果表明:在高温段光栅的谐振波长漂移量与温度之间仍能保持大的灵敏度(0.060 5 nm/℃)和好的线性度,且光纤耐高温涂覆层不受破坏,光纤耐高温涂覆在高温下不会出现碳化现象,光栅传感性能良好.实验证明该方法制作的光栅适合于长期在高温环境下使用,应用价值巨大.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号