首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Al/Ni multilayer bridge films, which were composed of alternate Al and Ni layers with bilayer thicknesses of 50, 100 and 200 nm, were prepared by RF magnetron sputtering. In each bilayer, the thickness ratio of Al to Ni was maintained at 3:2 to obtain an overall 1:1 atomic composition. The total thickness of Al/Ni multilayer films was 2 μm. XRD measurements show that the compound of AlNi is the final product of the exothermic reactions. DSC curves show that the values of heat release in Al/Ni multilayer films with bilayer thicknesses of 50, 100 and 200 nm are 389.43, 396.69 and 409.92 J?g?1, respectively. The temperatures of Al/Ni multilayer films were obviously higher than those of Al bridge film and Ni bridge film. Al/Ni multilayer films with modulation of 50 nm had the highest electrical explosion temperature of 7000 K. The exothermic reaction in Al/Ni multilayer films leads to a more intense electric explosion. Al/Ni multilayer bridge films with modulation period of 50 nm explode more rapidly and intensely than other bridge films because decreasing the bilayer thickness results in an increased reaction velocity.  相似文献   

2.
Ultrathin crystalline films of 10 mol% gadolinia-doped ceria (CGO10) are grown on MgO (100) substrates by pulsed laser deposition at a moderate temperature of 400°C. As-deposited CGO10 layers of approximately 4 nm, 14 nm, and 22 nm thickness consist of fine grains with dimensions ≤∼11 nm. The films show high density within the thickness probed in the X-ray reflectivity experiments. Thermally activated grain growth, density decrease, and film surface roughening, which may result in the formation of incoherent CGO10 islands by dewetting below a critical film thickness, are observed upon heat treatment at 400°C and 800°C. The effect of the grain coarsening on the electrical characteristics of the layers is investigated and discussed in the context of a variation of the number density of grain boundaries. The results are evaluated with regard to the use of ultrathin CGO10 films as seeding templates for the moderate temperature growth of thick solid electrolyte films with improved oxygen transport properties.  相似文献   

3.
Nanometer scale Al/AlN multilayers have been prepared by dc magnetron sputtering technique with a columnar target. A set of Al/AlN multilayers with the Al layer thickness of 2.9 nm and the AlN layer thickness variation from 1.13 to 6.81 nm were determined. Low angle X-ray diffraction (LAXRD) was used to analyze the layered structure of multilayers. The phase structure of the coatings was investigated with grazing angle XRD (GAXRD). Mechanical properties of these multilayers were thoroughly studied using a nanoindentation and ball-on-disk micro-tribometer. It was found that the multilayer hardness and reduced modulus showed no strong dependence on the AlN layer thickness. Al2.9 nm/AlN1.13 nm multilayer had more excellent tribological properties than single layers and other proportion multilayers with a lowest friction coefficient of 0.15. And the tribological properties of all the multilayers are superior to the AlN single layer.  相似文献   

4.
The roll bonding technique is one of the most widely used methods to produce metal laminate sheets. Such sheets offer interesting research opportunities for both scientists and engineers. In this paper, we report on an experimental investigation of the ‘thickness effect’ during laminate rolling for the first time. Using a four-high multifunction rolling mill, Cu/Al/Cu laminate sheets were fabricated with a range of thicknesses (16, 40, 70 and 130 μm) of the Al layer. The thickness of the Cu sheets was a constant 300 μm. After rolling, TEM images show good bonding quality between the Cu and Al layers. However, there are many nanoscale pores in the Al layer. The fraction of nanoscale pores in the Al layer increases with a reduction in the Al layer thickness. The finite element method was used to simulate the Cu/Al/Cu rolling process. The simulation results reveal the effect of the Al layer thickness on the deformation characteristics of the Cu/Al/Cu laminate. Finally, we propose that the size effect of the Al layer thickness during Cu/Al/Cu laminate rolling may offer a method to fabricate ‘nanoporous’ Al sandwich laminate foils. Such foils can be used in electromagnetic shielding of electrical devices and noisy shielding of building.  相似文献   

5.
The effects of layer thickness and thermal annealing on Curie temperature have been studied for CoPt ultrathin continuous layers in AlN/CoPt multilayer structures. It is found that there exists a critical thickness below which Curie temperature rapidly decreases due to the loss of spin-spin interactions in the vicinity of interface. After high temperature annealing, the in-plane lattice constant of CoPt film is increased and the exchange coupling parameter is decreased. Consequently, Curie temperatures decrease for some films with large thickness, compared with as-deposited state. Upon annealing at 600?°C, CoPt undergoes ordering transformation, which also contributes to the degradation of the Curie temperature. However, when the CoPt film thickness is below 2?nm, the Curie temperature is increased after annealing. Especially for 1?nm thick film, the Curie temperature is strikingly increased from 173?°C to 343?°C after annealing at 600?°C. This effect is attributed to the out-of-plane lattice deformation of CoPt thin layers in AlN/CoPt multilayer structures.  相似文献   

6.
Nanoscale multilayered Al–TiN composites were deposited using the dc magnetron sputtering technique in two different layer thickness ratios, Al : TiN = 1 : 1 and Al : TiN = 9 : 1. The Al layer thickness varied from 2 nm to 450 nm. The hardness of the samples was tested by nanoindentation using a Berkovich tip. Cross-sectional transmission electron microscopy (TEM) was carried out on samples extracted with focused ion beam from below the nanoindents. The results of the hardness tests on the Al–TiN multilayers with two different thickness ratios are presented, together with observations from the cross-sectional TEM studies of the regions underneath the indents. These studies revealed remarkable strength in the multilayers, as well as some very interesting deformation behavior in the TiN layers at extremely small length scales, where the hard TiN layers undergo co-deformation with the Al layers.  相似文献   

7.
《Composite Interfaces》2013,20(2):107-117
In this work, oxidation of silicon carbide particles (SiCp) at elevated temperature and its influence on the interface layer and thermal conductivity of SiCp/ZL101 composites prepared using pressure infiltration process were investigated respectively. It is found that initial temperature for the oxidation of SiCp is about 850?°C, and that the oxidation increment of SiCp and the thickness of SiO2 layer increase with the increase in pre-oxidation temperature and time, when the oxidized temperature exceeds 1100?°C, or the duration time exceeds 2?h at 1100?°C, a small amount of ablation will take place on the SiCp, as well as the oxidized layer has some loss. The formation of SiO2 layer can provide certain interface reactions with interface layers (3.1–6.36?μm), and the higher the thickness of SiO2 layer, the thicker the interface layer in SiCp/Al composites. However, the thickness of SiO2 layer is more than 5.9?μm, which is not benefit for the formation of interface layer. With the increase in the thickness of interface layer, thermal conductivity declines, but is not linear.  相似文献   

8.
Thin Ni/Si films are prepared by depositing a Ni layer with a thickness of 100 nm on a Si (100) substrate. The as-deposited thin-film specimens are indented to a maximum depth of 500 nm using a nanoindentation technique and are then annealed at temperatures of 200°C, 300°C, 500°C and 800°C for 2 min. The microstructural changes and phases induced in the various specimens are observed using transmission electron microscopy (TEM) and micro-Raman scattering spectroscopy (RSS). Based on the load-displacement data obtained in the nanoindentation tests, the hardness and Young’s modulus of the as-deposited specimens are found to be 13 GPa and 177 GPa, respectively. The microstructural observations reveal that the nanoindentation process prompts the transformation of the indentation-affected zone of the silicon substrate from a diamond cubic structure to a mixed structure comprising amorphous phase and metastable Si III and Si XII phases. Following annealing at temperatures of 200∼500°C, the indented zone contains either a mixture of amorphous phase and Si III and Si XII phases, or Si III and Si XII phases only, depending on the annealing temperature. In addition, the annealing process prompts the formation of nickel silicide phases at the Ni/Si interface or within the indentation zone. The composition of these phases depends on the annealing temperature. Specifically, Ni2Si is formed at a temperature of 200°C, NiSi is formed at a temperature of 300°C and 500°C, and NiSi2 is formed at 800°C.  相似文献   

9.
Nanopatterned sapphire substrates were fabricated by annealing of patterned Al thin films. Square-patterned Al thin films with the diagonal length of 600 nm, period of 1 um and height of ~200 nm were obtained by the Laser Interference Lithography and Reactive Ion Etching. Patterned Al thin films were subsequently subjected to dual stage annealing due to the melting temperature of Al thin films (660 °C). The first comprised a low temperature oxidation anneal. The hillocks formation on Al thin films was minimized with an oxidation annealing at 450 °C for 24 h. The little change in the morphology of patterned Al thin films was observed at 450 °C for 24 h. This was followed by a high temperature annealing to induce growth of the underlying sapphire single crystal to consume the oxide layer. The SEM results show the patterns were retained on sapphire substrates after high temperature annealing at less than 1200 °C. The XRD and Raman results reveal that the orientation of island patterns by dual stage annealing of patterned Al thin films for 24 h at 450 °C, and 1 h at 1000 °C, was the same as that of the sapphire (0001) substrates.  相似文献   

10.
We examined the thermal stability of amorphous silicon oxycarbide (SiOC) and crystalline Fe composite by in situ and ex situ annealing. The Fe/SiOC multilayer thin films were grown via magnetron sputtering with controlled length scales on a surface-oxidized Si (100) substrate. These Fe/SiOC multilayers were in situ or ex situ annealed at temperature of 600 °C or lower. The thin multilayer sample (~10 nm) was observed to have a layer breakdown after 600 °C annealing. Diffusion starts from low groove angle triple junctions in Fe layers. In contrast, the thick multilayer structure (~70 nm) was found to be stable and an intermixed layer (FexSiyOz) was observed after 600 °C annealing. The thickness of the intermixed layer does not vary as annealing time goes up. The results suggest that the FexSiyOz layer can impede further Fe, Si and O diffusion, and assists in maintaining morphological stability.  相似文献   

11.
Ever since quasicrystals were first discovered, they have been found to possess many unusual and useful properties. A long-standing problem, however, significantly impedes their practical usage: steady-state plastic deformation has only been found at high temperatures or under confining hydrostatic pressures. At low and intermediate temperatures, they are very brittle, suffer from low ductility and formability and, consequently, their deformation mechanisms are still not clear. Here, we systematically study the deformation behaviour of decagonal Al–Ni–Co quasicrystals using a micro-thermomechanical technique over a range of temperatures (25–500 °C), strain rates and sample sizes accompanying microstructural analysis. We demonstrate three temperature regimes for the quasicrystal plasticity: at room temperature, cracking controls deformation; at 100–300 °C, dislocation activities control the plastic deformation exhibiting serrated flows and a constant flow stress; at 400–500 °C, diffusion enhances the plasticity showing homogenous deformation. The micrometer-sized quasicrystals exhibit both high strengths of ~2.5–3.5 GPa and enhanced ductility of over 15% strains between 100 and 500 °C. This study improves understanding of quasicrystal plasticity in their low- and intermediate-temperature regimes, which was poorly understood before, and sheds light on their applications as small-sized structural materials.  相似文献   

12.
To gain fundamental insight into the relationship between length scales and mechanical behaviour, Ni-Fe multilayered materials with a 5-μm-layer thickness and a modulated grain size distribution have been synthesized by pulsed electrodeposition. Microstructural studies by SEM and TEM reveal the alternating growth of well-defined layers with either nano (d = 16 nm) or coarse grains (d ≥ 500 nm). Room temperature tensile tests have been performed to investigate the mechanical response and understand the underlying deformation mechanisms. Tensile test results and fractographic studies demonstrate that the overall room temperature mechanical behaviour of the multilayered material, i.e. strength and ductility, is governed primarily by the layers containing nanocrystalline grains. The measured properties have been discussed in the context of modulated grain structure of the multilayered sample and contribution of each grain size regime to the overall strength and ductility.  相似文献   

13.
In this paper, we report and analyze the large blue shift in the optical band-gap of sol-gel derived Ba0.5Sr0.5TiO3 (BST) thin films. BST films of different thickness (150 nm, 320 nm and 480 nm respectively) were deposited layer by layer onto fused quartz substrates by a spin coating technique. The drying temperature for individual layers (pre-sintering temperature) was varied as 400, 500 and 600 °C. A large blue shift in the band-gap was observed (with a value 4.70 eV compared to the bulk value of 3.60 eV) for films pre-sintered at 400 °C, which decreased with increase in the pre-sintering temperature. To date such blue shifts have been attributed to grain size reduction, stress and the amorphous nature of the films. Here, the blue shift has been correlated with the presence of charge carriers generated by oxygen vacancies and explained on the basis of the Burstein-Moss effect.  相似文献   

14.
The possibility of applying low-coherent tandem interferometry to optical monitoring of the temperature of a semiconductor substrate and the thickness of a deposited layer in metal-organic vapor-phase epitaxy (MOVPE) is demonstrated for the first time. The absolute accuracy in the temperature measurements of Si, GaAs, and sapphire substrates under MOVPE conditions is limited by the calibration accuracy and is ±1°C. The accuracy in the measurement of the deposited layer thickness is 2 nm. A considerable (10–100°C) deviation of the temperature measured by a thermocouple placed inside a susceptor from the actual substrate temperature is found. A significant temperature gradient along the susceptor depending on the gas flow rate and other factors is revealed. It is shown that, owing to the high heating efficiency of sapphire substrates, there is no need to coat their reverse with absorbing layers upon heating up to 300°C or in the presence of hydrogen pressure of higher than 100 mbar.  相似文献   

15.
Yanyu Liu  Feng Zhang  Zheng Liu  Zhi Wang 《哲学杂志》2018,98(12):1068-1086
In order to investigate the effect of temperature on the anisotropic behaviour of AZ31 magnesium alloy rolling sheet under high strain rate deformation, the Split Hopkinson Pressure Bar was used to analyse the dynamic mechanical properties of AZ31 magnesium alloy rolling sheet in three directions, rolling direction(RD), transverse direction (TD) and normal direction (ND). The texture of the rolling sheet was characterised by X-ray analysis and the microstructure prior and after high strain rate deformation was observed by optical microscope (OM). The results demonstrated that AZ31magnesium alloy rolling sheet has strong initial {0?0?0?2} texture, which resulted at the obvious anisotropy in high strain rate deformation at 20 °C. The anisotropy reflected in stress–strain curve, yield stress, peak stress and microstructure. The anisotropy became much weaker when the deformation temperature increased up to 250 °C. Continuing to increase the deformation temperature to 350 °C the anisotropy of AZ31 rolling sheet essentially disappeared. The decreasing tendency of anisotropy with increasing temperature was due to the fact that when the deformation temperature increased, the critical resolved shear stress (CRSS) for pyramidal 〈c + a〉 slip, which was the predominant slip mechanism for ND, decreased close to that of twinning, which was the predominant deformation mechanism for RD and TD. The deformation mechanism at different directions and temperatures and the Schmid factor (SF) at different directions were discussed in the present paper.  相似文献   

16.
Thin films composed of alternating Al/Cu/Al layers were deposited on a (111) Si substrate using pulsed laser deposition (PLD). The thicknesses of the film and the individual layers, and the detailed internal structure within the layers were characterized by means of transmission electron microscopy (TEM), high-resolution TEM (HRTEM), and energy-filtered TEM (EFTEM). Each Al or Cu layer consists of a single layer of nano-sized grains of different orientations. EFTEM results revealed a layer of oxide about 2 nm thick on the surface of the Si substrate, which is considered to be the reason for the formation of the first layer of nano-sized Al grains. The results demonstrate that the PLD technique is a powerful tool to produce nano-scale multilayered metal films with controllable thickness and grain sizes.  相似文献   

17.
Single crystalline Al2O3 fibres (sapphire), coated with the NiAl alloy IP75 by physical vapour deposition (PVD), were assembled to fabricate composites by means of diffusion bonding. The microstructure and chemistry of both as-coated fibre and as-diffusion bonded composites were investigated by electron microscopy and microanalysis. The interface shear stress for complete debonding was measured by fibre push-out tests at room temperature, and the composite tensile strength was measured at 900°C and 1100°C. An amorphous layer with a thickness of about 400?nm formed between the fibre and the matrix during the PVD process and was maintained during diffusion bonding. A Laves phase precipitated along NiAl grain boundaries in the IP75 matrix. This caused a lower tensile strength of the IP75/Al2O3 composite at high temperatures compared to as-cast monolithic IP75 and rendered the composite useless for structural applications.  相似文献   

18.
In the present work, B4C/2024Al composites with volume fraction of 45% were prepared by a pressure infiltration method. The microstructure of the crater bottom of B4C/2024Al composite after impact was characterized by transmission electron microscope (TEM), which indicated that recovery and dynamic recrystallization generated in Al matrix, and the grain size distribution was about from dozens of nanometer to 200 nm. Furthermore, the plastic deformation was observed in B4C ceramic, which led to the transformation from monocrystal to polycrystal ceramic grains. The boundary observed in this work was high-angle grain boundary and the two grains at the boundary had an orientation difference of 30°.  相似文献   

19.
Abstract

Binary Al–Ni, Al–Mg and ternary Al–Mg–Ni alloys containing various dispersions and volume fraction of second-phase particles of crystallisation origin were compressed in a temperature range of 200–500 °C and at strain rates of 0.1, 1, 10, 30 s?1 using the Gleeble 3800 thermomechanical simulator. Verification of axisymmetric compression tests was made by finite-element modelling. Constitutive models of hot deformation were constructed and effective activation energy of hot deformation was determined. It was found that the flow stress is lowered by decreasing the Al3Ni particle size in case of a low 0.03 volume fraction of particles in binary Al–Ni alloys. Intensive softening at large strains was achieved in the alloy with a 0.1 volume fraction of fine Al3Ni particles. Microstructure investigations confirmed that softening is a result of the dynamic restoration processes which were accelerated by fine particles. In contrast, the size of the particles had no influence on the flow stress of ternary Al–Mg–Ni alloy due to significant work hardening of the aluminium solid solution. Atoms of Mg in the aluminium solid solution significantly affect the deformation process and lead to the growth of the effective activation energy from 130–150 kJ/mol in the binary Al–Ni alloys to 170–190 kJ/mol in the ternary Al–Mg–Ni alloy.  相似文献   

20.
The resistivity of transparent conducting Al‐ and Ga‐doped ZnO (AZO and GZO) thin films prepared with a thickness in the range from 20 to 200 nm on glass substrates at a temperature below 200 °C was found to increase with exposure time when tested in a high humidity environment (air at 90% relative humidity and 60 °C). The resistivity stability (resistivity increase) was considerably affected by the thin film thickness. In particular, thin films with a thickness below about 50 nm were very unstable. The increase in resistivity is interpreted as carrier transport being dominated by grain boundary scattering resulting from the trapping of free electrons due to oxygen adsorption on the grain boundary surface. (© 2007 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号