首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 406 毫秒
1.
2.
This work explores to what extent the aroma or the non-volatile fractions of red wines are responsible for the overall flavor differences perceived in-mouth. For this purpose, 14 samples (4 commercial and 10 reconstituted wines), were sorted by a panel of 30 trained assessors according to their sensory in-mouth similarities. Reconstituted wines were prepared by adding the same volatile fraction (coming from a red wine) to the non-volatile fraction of 10 different red wines showing large differences in perceived astringency. Sorting was performed under three different conditions: (a) no aroma perception: nose-close condition (NA), (b) retronasal aroma perception only (RA), and (c) allowing retro- and involuntary orthonasal aroma perception (ROA). Similarity estimates were derived from the sorting and submitted to multidimensional scaling (MDS) followed by hierarchical cluster analysis (HCA). Results have clearly shown that, globally, aroma perception is not the major driver of the in-mouth sensory perception of red wine, which is undoubtedly primarily driven by the perception of astringency and by the chemical compounds causing it, particularly protein precipitable proanthocyanidins (PAs). However, aroma perception plays a significant role on the perception of sweetness and bitterness. The impact of aroma seems to be more important whenever astringency, total polyphenols and protein precipitable PAs levels are smaller. Results also indicate that when a red-black fruit odor nuance is clearly perceived in conditions in which orthonasal odor perception is allowed, a strong reduction in astringency takes place. Such red-black fruit odor nuance seems to be the result of a specific aroma release pattern as a consequence of the interaction between aroma compounds and the non-volatile matrix.  相似文献   

3.
The complex aroma of wine is derived from many sources, with grape-derived components being responsible for the varietal character. The ability to monitor grape aroma compounds would allow for better understanding of how vineyard practices and winemaking processes influence the final volatile composition of the wine. Here, we describe a procedure using GC–MS combined with headspace solid-phase microextraction (HS-SPME) for profiling the free volatile compounds in Cabernet Sauvignon grapes. Different sample preparation (SPME fiber type, extraction time, extraction temperature and dilution solvent) and GC–MS conditions were evaluated to optimize the method. For the final method, grape skins were homogenized with water and 8 ml of sample were placed in a 20 ml headspace vial with addition of NaCl; a polydimethylsiloxane SPME fiber was used for extraction at 40 °C for 30 min with continuous stirring. Using this method, 27 flavor compounds were monitored and used to profile the free volatile components in Cabernet Sauvignon grapes at different maturity levels. Ten compounds from the grapes, including 2-phenylethanol and β-damascenone, were also identified in the corresponding wines. Using this procedure it is possible to follow selected volatiles through the winemaking process.  相似文献   

4.
The free radical scavenging activity of 42 Spanish commercial wines was determined using the 2,2′-azinobis(3-ethylbenzothiazoline-6-sulfonic acid) radical cation (ABTS+). The ABTS+ radical was generated enzymatically using a horseradish peroxidase and hydrogen peroxide. The presence of wine phenolic compounds caused the absorbance of the radical to decay at 414 nm. The measurement conditions were optimised. The total phenolic content of wines ranged from 1262 to 2389 mg l−1 for red wines and 70 to 407 mg l−1 for white wines, expressed as gallic acid equivalents. The phenolic content of Sherry wines was similar to that of white wines. Optimum dilutions for white and Sherry wines were set up as a function of their total phenolic content (for total phenol index, TPI<300 mg gallic acid per liter, dilution 2.5:10 to 5:10; for TPI>300 mg gallic acid per liter, dilution 1:10 to 3:10). Red wines absorb at the wavelength of measurement and dilutions between 0.35:10 and 0.1:10 are advisable. Reaction kinetics were also monitored and the antioxidant activity, expressed as Trolox Equivalent Antioxidant Capacity (TEAC), was determined at 2 and 15 min of reaction. The mean values for TEAC2 min were 5.01±1.40 mM for red wines, 0.46±0.32 mM for white wines and 0.26±0.19 mM for Sherry wines. At 15 min, mean values were 6.93±2.41 mM for red wines, 0.67±0.47 mM for white wines and 0.26±0.19 mM for Sherry wines. The correlation coefficients were better at 2 min (r=0.9012) than at 15 min (r=0.8462) when compared with TPI. Hence, TEAC2 min seems to be a more appropriate measure.  相似文献   

5.
The use of cyclic voltammetry to characterize wines and wine polyphenols in a pH 3.3 model wine solution has been extended to take into account the effects of sulfur dioxide and polyphenol adsorption processes. A good correlation was obtained between a cyclic voltammetric measure, based upon the response produced before and after acetaldehyde additions, and the concentration of free sulfur dioxide in eight white wines (r2 = 0.974). By the addition of acetaldehyde to the white wines, an important new step in the methodology, the area under the anodic scan in the potential range from −100 to 1200 mV (Ag/AgCl) closely matched the spectroscopic measure of total polyphenols (absorbance at 280 nm) for the white wines, when both were measured in terms of caffeic acid equivalents (r2 = 0.949). The anodic peak area accounted for about 70% of the 280 nm total phenols measure, in catechin equivalents, for the red wines, and a good linear correlation was also obtained (r2 = 0.942). The level of catechol and galloyl-containing polyphenols in the wines was calculated by measuring the size of the first anodic peak at around 450 mV after treatment of the wines with acetaldehyde; the peak current correlated well with the total caffeic acid derivatives in the white wines determined by HPLC (r2 = 0.982). The concentration of flavonols was estimated by selective adsorption of these compounds onto the carbon electrode and determining the anodic peak current at 1120 mV, with good correlations obtained when compared to total flavonols as measured by HPLC (r2 = 0.984 for the red wines, and r2 = 0.987 for the white wines).  相似文献   

6.
7.
Butyltin compounds are widespread contaminants which have also been found in some wines, determined by liquid-liquid extraction followed by alkylation with a Grignard reagent and gas chromatography-mass spectrometric (GC-MS) analysis. A promising alternative to this extraction/derivatization method is the one-step tetraethylborate in situ ethylation/solid-phase micro-extraction (SPME) method. In this work, a SPME-GC-MS method for the determination of butyltin compounds in wine was optimised. The optimised parameters concerned the pre-treatment with tetramethylammonium hydroxide, matrix modification with sodium chloride, tetraethylborate concentration, extraction time and temperature, and the GC separation program. The analytical figures of merit of the optimised method (range, limit of detection (LOD) and reproducibility) were evaluated. The sensitivity (range 20-1421 kcounts μg−1 l−1 as Sn) and LOD (range, 0.01-0.2 μg l−1 as Sn) depended greatly on the butyltin species to be measured and on the type of wine. For the tested species (monobutyltin, dibutyltin and tributyltin) the highest sensitivities were achieved for Port wine samples, followed by red wine>white wine>white Verde wine. The method allowed acceptable repeatability (relative standard deviation (R.S.D.), 6-8%; n=4) and reproducibility (R.S.D., 8-9%; n=3).  相似文献   

8.
9.
The effects of different storage conditions, light exposure, temperature and different commercially available cork stoppers on the phenolic, volatile and sensorial profile of Verdejo wines were studied. Two natural corks of different visual quality and a microgranulated cork stopper were investigated over one year at two different storage conditions. One simulating light exposure and temperature in retail outlets and the other simulating optimal cellar conditions (darkness and 12 °C). The wines stored under commercial conditions showed greater losses of total and free SO2 and higher levels of brown-yellowish tones, related to the oxidation of flavan-3-ols. Although these wines underwent a decrease in the total content of stilbenes, a significant increase in trans-piceid was observed. In addition, these wines suffered important changes in their volatile and sensory profile. Volatile compounds with fruity and floral aromas decreased significantly, while volatile compounds related to aged-type characters, as linalool oxides, vitispirane, TDN or furan derivatives increased. Wines stored in darkness at 12 °C underwent minor changes and their sensory profiles were similar to wine before bottling. The high-quality natural corks and microgranulated corks better preserved the quality of the white wines from a sensory point of view. These results showed that temperature and light exposure conditions (diffuse white LEDs and 24 ± 2 °C) in retail outlets considerably decrease the quality of bottled white wines and, consequently, their shelf life, due to the premature development of aged-type characters.  相似文献   

10.
An analytical methodology based on headspace solid phase microextraction (HS-SPME) combined with comprehensive two-dimensional gas chromatography—time-of-flight mass spectrometry (GC × GC–ToFMS) was developed for the identification and quantification of the toxic contaminant ethyl carbamate (EC) directly in fortified wines. The method performance was assessed for dry/medium dry and sweet/medium sweet model wines, and for quantification purposes, calibration plots were performed for both matrices using the ion extraction chromatography (IEC) mode (m/z 62). Good linearity was obtained with a regression coefficient (r2) higher than 0.981. A good precision was attained (R.S.D. <20%) and low detection limits (LOD) were achieved for dry (4.31 μg/L) and sweet (2.75 μg/L) model wines. The quantification limits (LOQ) and recovery for dry wines were 14.38 μg/L and 88.6%, whereas for sweet wines were 9.16 μg/L and 99.4%, respectively. The higher performance was attainted with sweet model wine, as increasing of glucose content improves the volatile compound in headspace, and a better linearity, recovery and precision were achieved. The analytical methodology was applied to analyse 20 fortified Madeira wines including different types of wine (dry, medium dry, sweet, and medium sweet) obtained from several harvests in Madeira Island (Portugal). The EC levels ranged from 54.1 μg/L (medium dry) to 162.5 μg/L (medium sweet).  相似文献   

11.
Two novel methodologies for quantification of C13 norisoprenoids in wines were developed. The first methodology, method A (reference method) was based on the headspace solid-phase microextraction combined with gas chromatography–quadrupole mass spectrometry operating in selected ion monitoring mode (HS-SPME–GC–qMS–SIM). This methodology allowed to select the GC conditions for an adequate chromatographic resolution of wine components. The second methodology, method B (rapid method) was based on the HS-SPME–GC–qMS–SIM, using GC conditions that allowed to obtain a C13 norisoprenoid volatile signature. In the later, the GC capillary column of 30 m at 220 °C was used acting as a transfer line of the components sorbed by the SPME coating fibre to the mass spectrometer, which acts as a sensor for m/z fragments 142 and 192. It does not require any pre-treatment of the sample, and the C13 norisoprenoid composition of the wine was evaluated based on the chromatographic profile and specific m/z fragments, without complete chromatographic separation of its components. For quantification purposes, external calibration curves were constructed with β-ionone chemical standard. Calibration curves with regression coefficient (r2) of 0.9940 and 0.9968, RSD of 1.08% and 12.51%, and detection limits of 1.10 and 1.57 μg L−1 were obtained for methods A and B, respectively. These methodologies were applied to seventeen white and red table wines. Two vitispirane isomers (158–1529 μg L−1) and 1,1,6-trimethyl-1,2-dihydronaphthalene (TDN) (6.42–39.45 μg L−1) were quantified. The data obtained for vitispirane isomers and TDN using the two methods were highly correlated (r2 of 0.9756 and 0.9630, respectively). Associated to the fast and robust character of the proposed rapid method B and considering the extraction time, it is important to focus its selectivity and potential applicability if specific m/z fragments would be established for new analytes.  相似文献   

12.
A new method for determination of volatile terpenoids in wine is proposed. An off-line solid phase extraction—gas chromatographic method has been used for the determination. The influence of several extraction variables was studied, including the solid phase employed (C-18 versus divinylbenzene-based), eluting solvent (n-pentane, dichloromethane, ethanol and methanol), volume of eluting solvent (1-4 ml) and drying time (0-20 min). Complete recovery of volatile terpenoids from several kinds of wines was obtained under the optimized conditions.  相似文献   

13.
14.
Perestrelo R  Barros AS  Rocha SM  Câmara JS 《Talanta》2011,85(3):1483-1493
The volatiles (VOCs) and semi-volatile organic compounds (SVOCs) responsible for aroma are mainly present in skin of grape varieties. Thus, the present investigation is directed towards the optimisation of a solvent free methodology based on headspace-solid-phase microextraction (HS-SPME) combined with gas chromatography-quadrupole mass spectrometry (GC-qMS) in order to establish the global volatile composition in pulp and skin of Bual and Bastardo Vitis vinifera L. varieties. A deep study on the extraction-influencing parameters was performed, and the best results, expressed as GC peak area, number of identified compounds and reproducibility, were obtained using 4 g of sample homogenised in 5 mL of ultra-pure Milli-Q water in a 20 mL glass vial with addition of 2 g of sodium chloride (NaCl). A divinylbenzene/carboxen/polydimethylsiloxane fibre was selected for extraction at 60 °C for 45 min under continuous stirring at 800 rpm. More than 100 VOCs and SVOCs, including 27 monoterpenoids, 27 sesquiterpenoids, 21 carbonyl compounds, 17 alcohols (from which 2 aromatics), 10 C13 norisoprenoids and 5 acids were identified. The results showed that, for both grape varieties, the levels and number of volatiles in skin were considerably higher than those observed in pulp. According to the data obtained by principal component analysis (PCA), the establishment of the global volatile signature of grape and the relationship between different part of grapes—pulp and skin, may be an useful tool to winemaker decision to define the vinification procedures that improves the organoleptic characteristics of the corresponding wines and consequently contributed to an economic valorization and consumer acceptance.  相似文献   

15.
16.
17.
A solid-phase microextraction (SMPE) method coupled to a gas chromatography–mass spectrometry analysis was optimized to analyze the pentafluorobenzyl bromide (PFBBr) derivatives of the volatile thiols 4-methyl-4-mercapto-2-pentanone (4MMP), 3-mercaptohexyl acetate (3MHA) and 3-mercaptohexanol (3MH) in wine. This method used deuterated analogue compounds as internal standards. It allowed us to significantly reduce the matrix effect, resulted in good repeatability for all the compounds (RDS < 9.5% for 4MMP; <6% for 3MH and <4.1% for 3MHA) with limits of detection below their odour thresholds. The method was validated using white, rosé and red wines. When applied to analyze different wines, quantities closed to the odour threshold were determined.  相似文献   

18.
The aim of this work was to develop a new analytical technique for the study of the organoleptic compounds (flavour profile) of the Graciano Vitis vinifera wine variety. The cv. Graciano is a singular variety of red grapes with its origins in La Rioja and Navarra (northern Spain). This variety transfers an intense red colour, aroma and high acidity to musts and provides greater longevity and, consequently, a better capacity for ageing wine. A new dual-stir bar sorptive extraction approach coupled with thermal desorption (TD) and GC–MS has been used to extract the volatile and semivolatile compounds. In this extraction step, the optimal values for the experimental variables were obtained through the Response Surface Methodology (RSM). Full scan chromatogram data were evaluated with two deconvolution software tools, and the results were compared. The volatile and semivolatile components were identified with an MS match ≥80%. As a result, the flavour metabolome of the Graciano Vitis vinifera wine variety was obtained, and 205 metabolites were identified using different databases. These metabolites were grouped into esters, acids, alcohols, nitrogen compounds, furans, lactones, ketones, aldehydes, phenols, terpenes, norisoprenoids, sulphur compounds, acetals and pyrans. The majority of the metabolites observed had already been reported in the literature; however, this work also identified new, previously unreported metabolites in red wines, which may be characteristic of the Graciano variety.  相似文献   

19.
A simple and efficient dual preconcentration method of on-column liquid–liquid–liquid microextraction (LLLME) coupled with base stacking was developed for capillary zone electrophoresis (CZE) in this paper. Four N-methyl carbamates were used as target compounds to evaluate the enrichment means. The carbamates in sample solutions (donor phase) were extracted into a dodecanol phase immobilized on a porous hollow fiber, hydrolyzed and back extracted into 0.20 μL running buffer (acceptor phase) of 30 mmol/L methylamine hydrochloride (pH 11.6) containing 0.5 mmol/L tetradecyltrimethylammonium bromide inside the hollow fiber, stacked further with 0.5 mol/L NaOH injected at −10 kV for 60 s, and separated by CZE. Analytical parameters affecting the LLLME, base stacking and CZE were investigated, including sample solution volume, pH and temperature, extraction time, stirring rate, buffer component, buffer pH, NaOH concentration, stacking time, etc. The enrichment factors of the carbamates were higher than 1100. The relative standard deviation (RSD) of peak height and limits of detection (LODs) were 4.5–5.5% (n = 6) and 2–4 ng/mL (S/N = 3) for standard solutions, respectively. The proposed method was applied to the analysis of vegetable and fruit samples with the RSD less than 6.0% (n = 3) and LODs of 6–10 ng/g (S/N = 3). The calibration solutions were prepared by diluting the stock solutions with blank sample solutions, and the calibration concentrations ranged from 0.012 to 1.0 μg/mL (r > 0.9951). The analytical results demonstrated that the LLLME coupled with base stacking was a simple, convenient and reliable on-column sample pretreatment method for the analysis of anionic analytes in CZE.  相似文献   

20.
Lugana and Verdicchio are two Italian white wines with a Protected Designation of Origin (PDO) label. These two wine types are produced in different regions using the same grape variety. The aim of this work is to investigate the existence of volatile chemical markers that could help to elucidate differences between Lugana and Verdicchio wines both at chemical and sensory levels. Thirteen commercial wine samples were analyzed by Gas Chromatography-Mass Spectrometry (GC-MS), and 76 volatile compounds were identified and quantified. Verdicchio and Lugana had been differentiated on the basis of 19 free and glycosidically bound compounds belonging to the chemical classes of terpenes, benzenoids, higher alcohols, C6 alcohols and norisoprenoids. Samples were assessed by means of a sorting task sensory analysis, resulting in two clusters formed. These results suggested the existence of 2 product types with specific sensory spaces that can be related, to a good extend, to Verdicchio and Lugana wines. Cluster 1 was composed of six wines, 4 of which were Lugana, while Cluster 2 was formed of 7 wines, 5 of which were Verdicchio. The first cluster was described as “fruity”, and “fresh/minty”, while the second as “fermentative” and “spicy”. An attempt was made to relate analytical and sensory data, the results showed that damascenone and the sum of 3 of esters the ethyl hexanoate, ethyl octanoate and isoamyl acetate, was characterizing Cluster 1. These results highlighted the primary importance of geographical origin to the volatile composition and perceived aroma of Lugana and Verdicchio wines.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号