首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 296 毫秒
1.
2.
A method for preparation of a stationary phase-adjustable column with in-column stationary phase-coated fused-silica fiber annular column was successfully developed. The surface of a 0.12 mm o.d. bare optical fiber was first coated with a stationary phase and then inserted into a fused-silica capillary (non-coated or coated) as an annular column for gas chromatographic study. The optical fiber and capillary were coated with polydimethylsiloxane (SE-30) and polyethylene glycol 20M (PEG-20M) as nonpolar and polar stationary phases, respectively. Among the investigated annular and open tubular columns, the PEG-20M-coated fiber-in-PEG-20M-coated capillary annular column showed the highest column efficiency with a minimum plate height of 0.35 mm and an optimum gas velocity of 25 cm/s. When a SE-30/PEG-20M-coated fiber-in-uncoated capillary annular column was applied to separate a 9-component complex mixture, the total analysis time was 5.3 min and the column length was 12 m. By contrast, when a SE-30-coated fiber-in-PEG-20M-coated capillary annular column was used to separate the same 9-component mixture, the analysis time was reduced to 3.5 min and the column length was shortened by half to 6 m. Our results show that the stationary phase-coated fiber-in-stationary phase-coated capillary annular column is a better choice for gas chromatographic separation as it is more efficient and flexible. In addition, the proposed annular column design provides flexibility in using two or even more types of stationary phases to achieve optimal analytical separation.  相似文献   

3.
Hydrophilic interaction liquid chromatography (HILIC) is a fast growing separation technique for hydrophilic and polar analytes. In this work, we combine the unique selectivity of carbon surfaces with the high efficiency of core–shell silica. First, 5 μm core–shell silica is electrostatically coated with 105 nm cationic latex bearing quaternary ammonium groups. Then 50 nm anionic carbon nanoparticles are anchored onto the surface of the latex coated core–shell silica particles to produce a hybrid carbon–silica phase. The hybrid phase shows different selectivity than ten previously classified HILIC column chemistries and 36 stationary phases. The hybrid HILIC phase has shape selectivity for positional isomeric pairs (phthalic/isophthalic and 1-naphthoic/2-naphthoic acids). Fast and high efficiency HILIC separations of biologically important carboxylates, phenols and pharmaceuticals are reported with efficiencies up to 85,000 plates m−1. Reduced plate height of 1.9 (95,000 plates m−1) can be achieved. The hybrid phase is stable for at least 3 months of usage and storage under typical HILIC eluents.  相似文献   

4.
A two-dimensional ion chromatography (2D-IC) approach has been developed which provides greater resolution of complex samples than is possible currently using a single column. Two columns containing different stationary phases are connected via a tee-piece, which enables an additional eluent flow and independent control of eluent concentration on each column. The resultant mixed eluent flow at the tee-piece can be varied to produce a different eluent concentration on the second column. This allows analytes strongly retained on the first column to be separated rapidly on the second column, whilst maintaining a highly efficient, well resolved separation of analytes retained weakly on the first column. A group of 18 inorganic anions has been separated to demonstrate the utility of this approach and the proposed 2D-IC method provided separation of this mixture with resolution of all analytes greater than 1.3. Careful optimisation of the eluent profiles on both columns resulted in run times of less than 28 min, including re-equilibration. Separations were performed using isocratic or gradient elution on the first column, with an isocratic separation being used on the second column. Switching of the analytes onto the second column was performed using a gradient pulse of concentrated eluent to quickly elute strongly retained analytes from the first column onto the second column. The separations were highly repeatable (RSD of 0.01–0.12% for retention times and 0.08–2.9% for peak areas) and efficient (typically 8000–260,000 plates). Detection limits were 3–80 ppb.  相似文献   

5.
We packed an ionic liquid (IL)-functionalized stationary phase – based on 1-octyl-3-propylimidazolium chloride covalently bounded to silica gel – into a 3.2 mm × 250 mm column for the simultaneous separation of acidic, basic, and neutral compounds using carbon dioxide subcritical/supercritical fluid chromatography (SFC), and examined the effects of the pressure, temperature, co-solvents, and additives on the retention behavior of the analytes. The model compounds tested for SFC separation are acetaminophen, metoprolol, fenoprofen, ibuprofen, naphthalene, and testosterone. The data indicate that hydrogen-bonding and hydrophobic interactions between the analytes and the IL-modified stationary phase seem to involve in the separation process. Simultaneous separation of acidic, basic, and neutral compounds via SFC was successful at a co-solvent content of 20% MeOH, a pressure of 110 bar, and a column temperature of 35 °C. The relative standard deviations of the retention times and peak areas at 50 ppm were all less than 4 and 8% (n = 6), respectively.  相似文献   

6.
Recently, hydrophilic interaction chromatography (HILIC) has emerged as a valuable orthogonal tool to reversed-phase liquid chromatography (RP-LC) as it allows for resolution of highly polar ionisable compounds. The relationships between separation efficiency, column length and speed of analysis for 4.6 mm ID × 5 μm silica particle columns in HILIC are demonstrated using kinetic plots. The kinetic plots constructed for conventional pressure systems operating at 350 bar and at 30 °C and 80 °C are confirmed using experimental data for different column lengths. Efficiencies of more than 130,000 theoretical plates could be achieved by connecting up to six columns of 25 cm. As expected, a significant gain in analysis speed without loss of efficiency could be obtained by operating at 80 °C compared to 30 °C. The advantages of using long columns in HILIC in combination with elevated column temperature for the pharmaceutical industry are illustrated using test mixtures comprised of commercially available ionisable compounds (including some containing functional groups with potential genotoxic typical structural alerts) as well as real polar ionisable pharmaceuticals.  相似文献   

7.
The orthogonality of three columns coupled in two series was studied for the congener specific comprehensive two-dimensional GC separation of polychlorinated biphenyls (PCBs). A non-polar capillary column coated with poly(5%-phenyl–95%-methyl)siloxane was used as the first (1D) column in both series. A polar capillary column coated with 70% cyanopropyl-polysilphenylene-siloxane or a capillary column coated with the ionic liquid 1,12-di(tripropylphosphonium)dodecane bis(trifluoromethane-sulfonyl)imide were used as the second (2D) columns. Nine multi-congener standard PCB solutions containing subsets of all native 209 PCBs, a mixture of 209 PCBs as well as Aroclor 1242 and 1260 formulations were used to study the orthogonality of both column series. Retention times of the corresponding PCB congeners on 1D and 2D columns were used to construct retention time dependences (apex plots) for assessing orthogonality of both columns coupled in series. For a visual assessment of the peak density of PCBs congeners on a retention plane, 2D images were compared. The degree of orthogonality of both column series was, along the visual assessment of distribution of PCBs on the retention plane, evaluated also by Pearson's correlation coefficient, which was found by correlation of retention times tR,i,2D and tR,i,1D of corresponding PCB congeners on both column series. It was demonstrated that the apolar + ionic liquid column series is almost orthogonal both for the 2D separation of PCBs present in Aroclor 1242 and 1260 formulations as well as for the separation of all of 209 PCBs. All toxic, dioxin-like PCBs, with the exception of PCB 118 that overlaps with PCB 106, were resolved by the apolar/ionic liquid series while on the apolar/polar column series three toxic PCBs overlapped (105 + 127, 81 + 148 and 118 + 106).  相似文献   

8.
Four positionally isomeric 2-(2-quinolinyl)-1H-indene-1,3(2H)-dionedisulfonic acids (SA) and one triSA, components of the color additive Quinoline Yellow (QY, Color Index No. 47005), were isolated from the dye mixture by affinity-ligand pH-zone-refining counter-current chromatography (CCC) through complementary use of ion-exchange and ion-pair reagents as the ligand. The added ligands facilitated the partitioning of the very polar polysulfonated components into the organic stationary phase of the two-phase solvent systems that consisted of isoamyl alcohol–methyl tert-butyl ether–acetonitrile–water (3:5:1:7), (3:4:1:7) or (3:1:1:5). Thus, separation of a 5-g portion of QY using sulfuric acid as the retainer and dodecylamine as the ligand (an ion-exchange reagent, 20% in the stationary phase), resulted in 1.21 g of 6′,5-diSA and 1.69 g of 6′,8′,5-triSA, both of over 99% purity. A minor component, 8′,4-diSA, not previously reported was also obtained (4.8 mg of over 94% purity) through a similar separation of a different batch of QY using hydrochloric acid as the retainer and 10% dodecylamine as the ligand in the stationary phase. Two components that co-eluted (0.55 g) in the 5 g separation were separated when trifluoroacetic acid was used as the retainer and tetrabutylammonium hydroxide (an ion-pair reagent) as the ligand. The separation resulted in 20.7 mg of 6′,4-diSA, not previously reported, and 111.8 mg of 8′,5-diSA, both of over 98% purity. The isolated compounds were characterized by high-resolution mass spectrometry and proton nuclear magnetic resonance with correlated spectroscopy assignments.  相似文献   

9.
The retention of polar compounds, the separation of structural isomers and thermal stability make carbonaceous materials very attractive stationary phases for liquid chromatography (LC). Carbon clad zirconia (C/ZrO2), one of the most interesting, exhibits unparalleled chemical and thermal stability, but its characteristically low surface area (20–30 m2/g) limits broader application as a second dimension separation in two-dimensional liquid chromatography (2DLC) where high retentivity and therefore high stationary phase surface area are required. In this work, we used a high surface area commercial HPLC alumina (153 m2/g) as a support material to develop a carbon phase by chemical vapor deposition (CVD) at elevated temperature using hexane vapor as the carbon source. The loading of carbon was varied by changing the CVD time and temperature, and the carbon coated alumina (C/Al2O3) was characterized both physically and chromatographically. The resulting carbon phases behaved as a reversed phase similar to C/ZrO2. At all carbon loadings, C/Al2O3 closely matched the unique chromatographic selectivity of carbon phases, and as expected the retentivity was increased over C/ZrO2. Excess carbon – the amount equivalent to 5 monolayers – was required to fully cover the oxide support in C/Al2O3, but this was less excess than needed with C/ZrO2. Plate counts were 60,000–76,000/m for 5 μm particles. Spectroscopic studies (XPS and FT-IR) were also conducted; they showed that the two materials were chemically very similar.  相似文献   

10.
This paper builds on previous modelling research with short single layer columns to develop rapid methods for optimising high-performance counter-current chromatography at constant stationary phase retention. Benzyl alcohol and p-cresol are used as model compounds to rapidly optimise first flow and then rotational speed operating conditions at a preparative scale with long columns for a given phase system using a Dynamic Extractions Midi-DE centrifuge. The transfer to a high value extract such as the crude ethanol extract of Chinese herbal medicine Millettia pachycarpa Benth. is then demonstrated and validated using the same phase system. The results show that constant stationary phase modelling of flow and speed with long multilayer columns works well as a cheap, quick and effective method of optimising operating conditions for the chosen phase system—hexane–ethyl acetate–methanol–water (1:0.8:1:0.6, v/v). Optimum conditions for resolution were a flow of 20 ml/min and speed of 1200 rpm, but for throughput were 80 ml/min at the same speed. The results show that 80 ml/min gave the best throughputs for tephrosin (518 mg/h), pyranoisoflavone (47.2 mg/h) and dehydrodeguelin (10.4 mg/h), whereas for deguelin (100.5 mg/h), the best flow rate was 40 ml/min.  相似文献   

11.
Strongly polar phenolic acids are weakly retained and often poorly separated in reversed-phase (RP) liquid chromatography. We prepared zwitterionic polymethacrylate monolithic columns for micro-HPLC by in situ co-polymerization in fused-silica capillaries. The capillary monolithic columns prepared under optimized polymerization conditions show some similarities with the conventional particulate commercial ZIC-HILIC silica-based columns, however have higher retention and better separation selectivity under reversed-phase conditions, so that they can be employed for dual-mode HILIC-RP separations of phenolic acids on a single column. The capillary polymethacrylate monolithic sulfobetaine columns show excellent thermal stability and improved performance at temperatures 60–80 °C. The effects of the operation conditions on separation were investigated, including the type and the concentration of the organic solvent in the aqueous-organic mobile phase (acetonitrile and methanol), the ionic strength of the acetate buffer and temperature. While the retention in the RP mode decreases at higher temperatures in mobile phases with relatively low concentrations of acetonitrile, it is almost independent of temperature at HILIC conditions in highly organic mobile phases. The best separation efficiency can be achieved using relatively high acetate buffer ionic strength (20–30 mmol L−1) and gradient elution with alternately increasing (HILIC mode) and decreasing (RP mode) concentration of aqueous buffer in aqueous acetonitrile. Applications of the monolithic sulfobetaine capillary columns in alternating HILIC-RP modes are demonstrated on the analysis of phenolic acids in a beer sample.  相似文献   

12.
The performance of a polymeric stationary phase with reversed-phase properties (ET-RP1) was evaluated for LC separations at elevated temperature. The most significant observation was that the reduced plate height (h) decreased from 3.4 at 25 °C (optimal flow 0.5 mL/min) to 2.4 at 150 °C (optimal flow 2.5 mL/min) which is comparable to the efficiency obtained with silica-based reversed-phase columns of 4.6 mm ID operated at 0.8 mL/min. The phase showed no deterioration after long use at 150 °C within the pH range 1–9. Catalytic activity originating from the stationary phase material, e.g. as experienced on zirconium columns operated at elevated temperature, was absent. The performance of ET-RP1 is illustrated with the analysis of some pharmaceutical samples by LC and LC–MS. Operation at elevated temperature also allows to reduce the amount of organic modifier or to replace acetonitrile and methanol by the biodegradable ethanol.  相似文献   

13.
Compared to moderately and weakly hydrophilic bases, highly polar basic compounds are even more difficult to separate due to their poor retention in reversed phase (RP) mode. This study described the successful applications of a strong cation exchange (SCX) stationary phase to achieve symmetric peak shape, adequate retention and selectivity in the separation of very polar basic compounds. Salt and acetonitrile concentrations were adjusted to optimize the separation. Good correlations (R2 = 0.998–1.000) between the logarithm of the retention factor and the logarithm of salt or acetonitrile concentration were obtained. Gradients generated by changing salt or acetonitrile concentration were compared for the analysis of different highly polar bases. Although all of the analytes were eluted more quickly with an acetonitrile gradient, the effect of the gradients tested on peak width and peak shape varied with respect to analyte. In addition, the effects of different types of cation and anion additives were also investigated. After separation parameters were acquired, the SCX-based method was utilized to analyze highly hydrophilic alkaloids from Scopolia tangutica Maxim with high separation efficiency (plate numbers > 32,000 m−1). Concurrently, one very polar alkaloid fraction was purified with symmetric peak shape using the current method. Our results suggest that SCX stationary phase can be used as an alternative to RP stationary phase in the analysis and purification of highly hydrophilic basic compounds.  相似文献   

14.
Metal–organic frameworks (MOFs) have received great attention as novel media in separation sciences because of their fascinating structures and unusual properties. However, to the best of our knowledge, there has been no attempt to utilize chiral MOFs as stationary phases in capillary electrochromatography (CEC). In this study, a homochiral helical MOF [Zn2(D-Cam)2(4,4′-bpy)]n (D-Cam = D-(+)-camphoric acid, 4,4′-bpy = 4,4′-bipyridine) was explored as the chiral stationary phase in open tubular capillary electrochromatography (OT-CEC) for separation of chiral compounds and isomers. The MOFs coated column has been developed using a simple procedure via MOFs post-coated on the sodium silicate layer. The baseline separations of flavanone and praziquantel were achieved on the MOFs coated column with high resolution of more than 2.10. The influences of pH, organic modifier content and buffer concentration on separation were investigated. Besides, the separations of isomers (nitrophenols and ionones) were evaluated. The relative standard deviations (RSDs) for the retention time of run-to-run, day-to-day and column-to-column were 1.04%, 2.16% and 3.07%, respectively. The results demonstrated that chiral MOFs are promising for enantioseparation in CEC.  相似文献   

15.
A sol–gel titania poly(tetrahydrofuran) (poly-THF) coating was developed for capillary microextraction hyphenated on-line with high-performance liquid chromatography (HPLC). Poly-THF was covalently bonded to the sol–gel titania network which, in turn, became chemically anchored to the inner surface of a 0.25 mm I.D. fused silica capillary. For sample preconcentration, a 38-cm segment of the sol–gel titania poly-THF coated capillary was installed on an HPLC injection port as a sampling loop. Aqueous samples containing a variety of analytes were passed through the capillary and, during this process, the analytes were extracted by the sol–gel titania poly-THF coating on the inner surface of the capillary. Using isocratic and gradient elution with acetonitrile/water mobile phases, the extracted analytes were desorbed into the on-line coupled HPLC column for separation and UV detection. The sol–gel titania poly-THF coating was especially efficient in extracting polar analytes, such as underivatized phenols, alcohols, amines, and aromatic carboxylic acids. In addition, this coating was capable of extracting moderately polar and nonpolar analytes, such as ketones and polycyclic aromatic hydrocarbons. The sol–gel titania poly-THF coated capillary was also able to extract polypeptides at pH values near their respective isoelectric points. Extraction of these compounds can be important for environmental and biomedical applications. The observed extraction behavior can be attributed to the polar and nonpolar moieties in the poly-THF structure. This coating was found to be stable under extremely low and high pH conditions—even after 18 h of exposure to 1 M HCl (pH ≈0.0) and 1 M NaOH (pH ≈14.0).  相似文献   

16.
trans Isomers of naturally occurring cis-unsaturated fatty acids are produced when liquid vegetable oils or marine oils are partially hydrogenated to produce margarine, shortenings, and other hardened-fat products. Isomeric trans fatty acids are also formed in the intestinal tract of ruminants, and they appear in small amounts in dairy products and ruminant meat. Currently, satisfactory analyses for the fatty acid profiles of fats containing trans fatty acids are obtained by gas chromatography (GC) using capillary columns coated with highly polar cyanosilicone stationary phases. In capillary GC methods, the key limitation has been the incomplete separation of trans-monoenoic acid isomers from their cis isomers; however, recent reports have demonstrated that improvements in separation are attainable with the use of 100 m columns. In these columns, there is very little overlap of cis and trans isomers. More accurate trans fatty acid analyses can be obtained by coupling GC with either silver-nitrate thin-layer chromatography or silver-nitrate liquid chromatography.  相似文献   

17.
Within the scope of research for target and non-target LC–MS/MS analysis of membrane degradation products of polymer electrolyte membrane fuel cells, a systematic method development for the separation of structurally similar compounds was performed by phase optimized liquid chromatography. Five different stationary phases with different selectivities were used. Isocratic separation for 4-hydroxybenzoic acid, isophthalic acid, terephthalic acid, 4-hydroxybenzaldehyde and 4-formylbenzoic acid was achieved on a C18 and a Phenyl phase. Using the PRISMA model the separation efficiency was optimized. This was achieved on a serially connected mixed stationary phase composed of 30 mm C18, 150 mm Phenyl and 60 mm C30. For the LC–MS screening of unknown degradation products from polymer electrolyte membranes in the product water of a fuel cell, a solvent gradient is mandatory for less polar or later eluting compounds. By means of 4-mercaptobenzoic acid it could be shown that a solvent gradient can be applied in order to elute later eluting compounds in a short time. The adaptability of this method for the qualitative analysis by target and non-target LC–MS/MS screening has been shown by means of 4-hydroxybenzoic acid. The combination of solvent gradient and isocratic conditions makes this approach attractive for the purpose of a screening method for known and unknown analytes in a water sample.  相似文献   

18.
The gas chromatographic–mass spectrometric (GC–MS) separation of all 209 polychlorinated biphenyl (PCB) congeners was studied on an extremely efficient 80 m × 0.1 mm i.d. capillary column coated with a 0.1 μm film of poly(5%-phenyl methyl)siloxane stationary phase. The quality of the separation and the number of resolved and coeluting peaks were compared to predictions according to the statistical overlap theory (SOT) and to literature data on PCB separations obtained by one-dimensional and comprehensive two-dimensional GC (GC × GC) and GC–MS. Mass spectral and chemometric deconvolution procedures were used to resolve overlapping peaks. On the highly efficient column, 195 PCB congeners were resolved in 96 min separation time using spectral and chemometric deconvolution. This number is comparable to the best separations described in GC × GC–MS mode. The novel method was developed for spectral deconvolution of overlapped PCB congeners which was verified determining the most toxic, dioxin-like PCBs both in the model mixture of 209 PCBs as well as in the Aroclor 1242 and Aroclor 1254 formulations.  相似文献   

19.
Amylose tris(5-chloro-2-methylphenylcarbamate) was coated onto native and aminopropylsilanized silica in order to prepare chiral stationary phases (CSP) for enantioseparations using nano-liquid chromatography (nano-LC) and capillary electrochromatography (CEC). The effect of the nature of silica, the particle size and pore diameter, the chiral selector loading onto silica, the mobile phase composition and pH, as well as separation variables such as a linear flow rate of the mobile phase, applied voltage in CEC, etc. on the separation of enantiomers was studied. It was found that CSPs based on amylose tris(5-chloro-2-methylphenylcarbamate) can be used for preparation of stable capillary columns for enantioseparations by nano-LC and CEC in combination with polar organic and aqueous–organic mobile phases. Higher peak efficiency was observed in CEC than in nano-LC.  相似文献   

20.
Acetonitrile–water extracts of several Ganoderma species – a mushroom being used in Traditional Chinese Medicine – were analysed by liquid chromatography–UV detection in hydrophilic interaction chromatography (HILIC) and reversed-phase (RP) elution modes. A set of six polar stationary phases was used for HILIC runs. These columns had remarkably different separation properties under binary gradient conditions as evinced by hierarchical cluster analysis on retention patterns of seven test compounds. Complementary measurements of RP chromatograms were carried out on a C18 packing. Injection precision (n = 5) and intra-day precision (n = 5) were each <2.0% RSD (HILIC) and <0.7% RSD (RP) for relative retention times of main characteristic peaks of a sample extract while for relative peak areas RSD values were max. 6.8%. Repetitive analysis (n = 7) of a processed sample stored in the autosampler tray for 48 h was used to confirm within-sequence sample stability. Eleven Ganoderma lucidum samples served as training set for the construction of column-specific simulated mean chromatograms. Validation with twelve samples comprising G. lucidum, Ganoderma sinense, Ganoderma atrum, and Ganoderma tsugae by correlation coefficient based similarity evaluation of peak patterns showed that a discrimination of G. lucidum from other Ganoderma species by means of chromatographic fingerprints is conceptually possible on all columns, except of a bare silica packing. The importance of the combined use of RP and HILIC fingerprints to improve the rate of correct sample classification was demonstrated by the fact that each one G. sinense specimen was wrongly assigned being G. lucidum by all HILIC fingerprints but not the RP fingerprint and vice versa. The present data revealed that (i) the analysis of complex biological materials by quasi orthogonal chromatographic modes such as HILIC and RP may deliver more discriminative information than single-mode approaches which strengthens the reliability of fingerprint-based sample classification and (ii) different retention and selectivity characteristics of polar bonded silica packings in the HILIC elution mode may only have a minor impact on chemometric sample discrimination capabilities in such kind of pattern-oriented metabolomics separation problems.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号