首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   1304篇
  免费   54篇
  国内免费   6篇
化学   1120篇
晶体学   5篇
力学   17篇
数学   78篇
物理学   144篇
  2023年   6篇
  2022年   13篇
  2021年   49篇
  2020年   53篇
  2019年   37篇
  2018年   46篇
  2017年   27篇
  2016年   59篇
  2015年   55篇
  2014年   46篇
  2013年   92篇
  2012年   93篇
  2011年   138篇
  2010年   64篇
  2009年   73篇
  2008年   70篇
  2007年   73篇
  2006年   72篇
  2005年   54篇
  2004年   46篇
  2003年   26篇
  2002年   22篇
  2001年   15篇
  2000年   13篇
  1999年   6篇
  1998年   5篇
  1997年   4篇
  1996年   6篇
  1995年   6篇
  1994年   9篇
  1993年   12篇
  1992年   3篇
  1990年   2篇
  1989年   2篇
  1988年   2篇
  1986年   3篇
  1985年   3篇
  1984年   4篇
  1983年   4篇
  1982年   6篇
  1980年   3篇
  1979年   2篇
  1978年   5篇
  1977年   3篇
  1976年   3篇
  1975年   3篇
  1974年   3篇
  1972年   7篇
  1971年   5篇
  1969年   3篇
排序方式: 共有1364条查询结果,搜索用时 78 毫秒
1.
2.
We study stable blow-up dynamics in the generalized Hartree equation with radial symmetry, which is a Schrödinger-type equation with a nonlocal, convolution-type nonlinearity: First, we consider the -critical case in dimensions and obtain that a generic blow-up has a self-similar structure and exhibits not only the square root blowup rate , but also the log-log correction (via asymptotic analysis and functional fitting), thus, behaving similarly to the stable blow-up regime in the -critical nonlinear Schrödinger equation. In this setting, we also study blow-up profiles and show that generic blow-up solutions converge to the rescaled , a ground state solution of the elliptic equation . We also consider the -supercritical case in dimensions . We derive the profile equation for the self-similar blow-up and establish the existence and local uniqueness of its solutions. As in the NLS -supercritical regime, the profile equation exhibits branches of nonoscillating, polynomially decaying (multi-bump) solutions. A numerical scheme of putting constraints into solving the corresponding ordinary differential equation is applied during the process of finding the multi-bump solutions. Direct numerical simulation of solutions to the generalized Hartree equation by the dynamic rescaling method indicates that the is the profile for the stable blow-up. In this supercritical case, we obtain the blow-up rate without any correction. This blow-up happens at the focusing level , and thus, numerically observable (unlike the -critical case). In summary, we find that the results are similar to the behavior of stable self-similar blowup solutions in the corresponding settings for the nonlinear Schrödinger equation. Consequently, one may expect that the form of the nonlinearity in the Schrödinger-type equations is not essential in the stable formation of singularities.  相似文献   
3.
The identification of acid and nonacid species at the external surface of zeolites remains a major challenge, in contrast to the extensively-studied internal acid sites. Here, it is shown that the synthesis of zeolite ZSM-5 samples with distinct particle sizes, combined with solid-state NMR and computational studies of trimethylphosphine oxide (TMPO) adsorption, provides insight into the chemical species on the external surface of the zeolite crystals. 1H–31P HETCOR NMR spectra of TMPO-loaded zeolites exhibit a broad correlation peak at δP ∼35–55 ppm and δH ∼5–12 ppm assigned to external SiOH species. Pore-mouth Brønsted acid sites exhibit 31P and 1H NMR resonances and adsorption energies close to those reported for internal acid sites interacting with TMPO. The presence of an external tricoordinate Al-Lewis site interacting strongly with TMPO is suggested, resulting in 31P resonances that overlap with the peaks usually ascribed to the interaction of TMPO with Brønsted sites.  相似文献   
4.
Targeted delivery of doxorubicin still poses a challenge with regards to the quantities reaching the target site as well as the specificity of the uptake. In the present approach, two colloidal nanocarrier systems, NanoCore-6.4 and NanoCore-7.4, loaded with doxorubicin and characterized by different drug release behaviors were evaluated in vitro and in vivo. The nanoparticles utilize a specific surface design to modulate the lipid corona by attracting blood-borne apolipoproteins involved in the endogenous transport of chylomicrons across the blood–brain barrier. When applying this strategy, the fine balance between drug release and carrier accumulation is responsible for targeted delivery. Drug release experiments in an aqueous medium resulted in a difference in drug release of approximately 20%, while a 10% difference was found in human serum. This difference affected the partitioning of doxorubicin in human blood and was reflected by the outcome of the pharmacokinetic study in rats. For the fast-releasing formulation NanoCore-6.4, the AUC0→1h was significantly lower (2999.1 ng × h/mL) than the one of NanoCore-7.4 (3589.5 ng × h/mL). A compartmental analysis using the physiologically-based nanocarrier biopharmaceutics model indicated a significant difference in the release behavior and targeting capability. A fraction of approximately 7.310–7.615% of NanoCore-7.4 was available for drug targeting, while for NanoCore-6.4 only 5.740–6.057% of the injected doxorubicin was accumulated. Although the targeting capabilities indicate bioequivalent behavior, they provide evidence for the quality-by-design approach followed in formulation development.  相似文献   
5.
Catalytic oxidation of methanol (MeOH) in the absence of noble metals and noble metal oxides as catalysts, and the use of metal-free materials are inexpensive and attractive process for practical use in electrocatalysis, sensors, and in direct methanol fuel cells. In previous works, it was found that the use of single-walled (SWCNT) or multi-walled (MWCNT) carbon nanotube paper electrodes instead of GC increases the catalytic efficiency of organic compounds oxidation in the presence of aromatic di-N-oxides by several times. In this work, the effect of non-covalent interactions on the catalytic efficiency of MeOH oxidation in the presence of 2,5-di-Me-pyrazine-di-N-oxide (Pyr1) in 0.1 M Bu4NClO4 solution in acetonitrile at SWCNT and MWСNT paper electrodes was studied by the methods of quantum chemical modeling, Raman spectroscopy, and using electrochemical data. New factors determined the features of mechanism of MeOH oxidation on CNT electrodes and lead to an increase in the catalytic efficiency of the electrode process in comparison with the GC electrode were established.  相似文献   
6.
7.
We report the development of a metal-free four-step one-pot synthetic strategy to access high-value functionalized phthalazines using o-methyl benzophenones as starting compounds. Combining a light-mediated enolization of o-methyl benzophenones/Diels-Alder reaction domino process with a subsequent deprotection/aromatization domino reaction in one-pot leads to sustainable and efficient organic synthesis. The tangible advantages, i. e., absence of catalysts or additives, utilization of commercially available and/or easily accessible substrates, mild reaction conditions, simplicity, and single work-up procedure, make this combined process highly appealing for the direct construction of various 1-aryl-phthalazines. Importantly, in vitro bioactivity evaluation of these newly prepared heterocyclic compounds demonstrated a strong antiviral efficacy against major human pathogens like HCMV and SARS-CoV-2.  相似文献   
8.
The principle aspects and constraints of the dynamics and kinetics of zeolite nucleation in hydrogel systems are analyzed on the basis of a model Na‐rich aluminosilicate system. A detailed time‐series EMT‐type zeolite crystallization study in the model hydrogel system was performed to elucidate the topological and temporal aspects of zeolite nucleation. A comprehensive set of analytical tools and methods was employed to analyze the gel evolution and complement the primary methods of transmission electron microscopy (TEM) and nuclear magnetic resonance (NMR) spectroscopy. TEM tomography reveals that the initial gel particles exhibit a core–shell structure. Zeolite nucleation is topologically limited to this shell structure and the kinetics of nucleation is controlled by the shell integrity. The induction period extends to the moment when the shell is consumed and the bulk solution can react with the core of the gel particles. These new findings, in particular the importance of the gel particle shell in zeolite nucleation, can be used to control the growth process and properties of zeolites formed in hydrogels.  相似文献   
9.
10.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号