首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到18条相似文献,搜索用时 477 毫秒
1.
马国亮  刘海  王豪  李兴冀  杨剑群  何世禹 《物理学报》2013,62(14):147102-147102
利用低温力学测试系统研究了电化学沉积纳米Ni在77 K温度下的压缩行为. 室温下纳米Ni 的屈服强度为 2.0 GPa, 77 K温度下的屈服强度为3.0 GPa, 压缩变形量则由室温的10%左右下降到5%. 借助应变速率敏感指数、激活体积、扫描电子显微和高分辨透射电子显微分析, 对纳米Ni的塑性变形机制进行了表征. 研究表明, 在77 K温度下的塑性变形主要是由晶界-位错协调变形主导, 晶界本征位错弓出后无阻碍地在晶粒内无位错区运动, 直至在相对晶界发生类似切割林位错行为. 同时分析了弓出位错的残留位错部分在协调塑性变形时起到的增加应变相容性和减小应力集中的作用. 利用晶界-位错协调机制和残留位错运动与温度及缺陷的相关性揭示了纳米Ni室温和77 K温度压缩性能差异的内在原因. 关键词: 塑性变形 强度 位错  相似文献   

2.
闻鹏  陶钢  任保祥  裴政 《物理学报》2015,64(12):126201-126201
在聚能装药爆炸压缩形成射流的过程中, 伴随着金属药型罩的晶粒细化, 从原始晶粒30-80 μm细化到亚微米甚至纳米量级, 从微观层面研究其细化机理和动态超塑性变形机理具有很重要的科学意义. 采用分子动力学方法模拟了不同晶粒尺寸下纳米多晶铜的单轴拉伸变形行为, 得到了不同晶粒尺寸下的应力-应变曲线, 同时计算了各应力-应变曲线所对应的平均流变应力. 研究发现平均流变应力最大值出现在晶粒尺寸为14.85 nm时. 通过原子构型显示, 给出了典型的位错运动过程和晶界运动过程, 并分析了在不同晶粒尺寸下纳米多晶铜的塑性变形机理. 研究表明: 当晶粒尺寸大于14.85 nm时, 纳米多晶铜的变形机理以位错运动为主; 当晶粒尺寸小于14.85 nm时, 变形机理以晶界运动为主, 变形机理的改变是纳米多晶铜出现软化现象即反常Hall-Petch关系的根本原因. 通过计算结果分析, 建立了晶粒合并和晶界转动相结合的理想变形机理模型, 为研究射流大变形现象提供微观变形机理参考.  相似文献   

3.
马文  祝文军  陈开果  经福谦 《物理学报》2011,60(1):16107-016107
用分子动力学方法研究了纳米多晶铝在冲击加载下的冲击波阵面结构及塑性变形机理.模拟研究结果表明:在弹性先驱波之后,是晶界间滑移和变形主导了前期的塑性变形机理;然后是不全位错在界面上成核和向晶粒内传播,然后在晶粒内形成堆垛层错、孪晶和全位错的过程主导了后期的塑性变形机理.冲击波阵面扫过之后留下的结构特征是堆垛层错和孪晶留在晶粒内,大部分全位错则湮灭于对面晶界.这个由两阶段塑性变形过程导致的时序性塑性波阵面结构是过去未见报道过的. 关键词: 晶界 塑性变形 冲击波阵面 分子动力学  相似文献   

4.
赵宇龙  陈铮  龙建  杨涛 《物理学报》2013,62(11):118102-118102
采用晶体相场模型模拟获得了平均晶粒尺寸从11.61–31.32 nm的纳米晶组织, 研究了单向拉伸过程纳米晶组织的强化规律的微观变形机理. 模拟结果表明: 晶粒转动、晶界迁移等晶间变形行为是纳米晶材料的主要微观变形方式, 纳米晶尺寸减小, 有利于晶粒转动, 使屈服强度降低, 显示出反霍尔-佩奇效应.当纳米晶较小时, 变形量超过屈服点达到4%, 位错运动开启, 其对变形的直接贡献有限, 主要通过改变晶界结构而影响变形行为, 位错运动破坏三叉晶界, 引发晶界弯曲, 促进晶界迁移. 随纳米晶增大, 晶粒转动困难, 出现晶界锯齿化并发射位错的现象. 关键词: 晶体相场 纳米晶 反霍尔-佩奇效应 微观变形  相似文献   

5.
袁林  敬鹏  刘艳华  徐振海  单德彬  郭斌 《物理学报》2014,63(1):16201-016201
纳米尺度金属Ag以其独特的导电和导热性,广泛应用于微电子、光电子学、催化等领域,特别是在纳米微电极和纳米器件方面的应用.本文采用分子动力学方法模拟了不同晶粒尺寸下多晶银纳米线的拉伸变形行为,详细分析了晶粒尺寸对多晶银纳米线弹性模量、屈服强度、塑性变形机理的影响.发现当晶粒尺寸小于13.49 nm时,多晶Ag纳米线呈现软化现象,出现反Hall-Petch关系,此时的塑性变形机理主要以晶界滑移、晶粒转动为主,变形后期形成五重孪晶;当晶粒尺寸大于13.49 nm时,塑性变形以位错滑移为主,变形后期产生大量的孪晶组织.  相似文献   

6.
马文  陆彦文 《物理学报》2013,62(3):36201-036201
冲击波阵面反映材料在冲击压缩下的弹塑性变形行为以及屈服强度、应变率条件等宏观量, 还与冲击压缩后的强度变化联系. 本文使用分子动力学方法, 模拟研究了冲击压缩下纳米多晶铜中的动态塑性变形过程, 考察了冲击波阵面和弹塑性机理对晶界存在的依赖, 并与纳米多晶铝的冲击压缩进行了比较. 研究发现: 相比晶界对纳米多晶铝的贡献而言, 纳米多晶铜中晶界对冲击波阵面宽度的影响较小; 并且其塑性变形机理主要以不全位错的发射和传播为主, 很少观察到全位错和形变孪晶的出现. 模拟还发现纳米多晶铜的冲击波阵面宽度随着冲击应力的增加而减小, 并得到了冲击波阵面宽度与冲击应力之间的定量反比关系, 该定量关系与他人纳米多晶铜模拟结果相近, 而与粗晶铜的冲击压缩实验结果相差较大.  相似文献   

7.
冲击波在纳米金属铜中传播的分子动力学模拟   总被引:1,自引:0,他引:1       下载免费PDF全文
使用分子动力学方法模拟了冲击波在纳米金属铜中的传播,模拟样品由Voronoi方法得到.结果显示纳米金属铜在冲击加载下呈现多次屈服的现象,并发现冲击波具有多波结构.由于设计样品时选择了晶粒取向,晶界滑移和位错在冲击波波形上被区分开.冲击波波阵面由弹性变形区、晶界滑移主导的塑性变形区和位错主导的塑性变形区组成.样品中弹性波前沿扰动较小,而位错主导的塑性波前沿扰动较大,造成后者的主要原因是波阵面上沿冲击方向不同取向晶粒的不同屈服行为.  相似文献   

8.
利用分子动力学模拟方法研究了拉伸荷载作用下晶粒尺寸对纳米多晶铁变形机制的影响.研究结果表明杨氏模量随着晶粒尺寸的减小而减小.当晶粒尺寸小于15.50 nm时,纳米多晶铁的峰值应力和晶粒尺寸之间遵循反常的Hall-Petch关系,此时晶粒旋转和晶界迁移是其塑性变形的主要变形机制;随着晶粒尺寸的增大,变形孪晶和位错滑移在其塑性变形过程中逐渐占据主导地位.裂纹的形成是导致大晶粒尺寸模型力学性能降低的主要因素.纳米多晶铁在塑性变形中会出现孪晶界的迁移和退孪晶现象.此外还研究了温度对纳米多晶铁变形机制的影响.  相似文献   

9.
徐洲  王秀喜  梁海弋  吴恒安 《物理学报》2004,53(11):3637-3643
通过对不同温度下单晶薄膜的拉伸性能的分子动力学模拟,从微观角度揭示了温度效应对材料性能的影响. 结果表明温度效应对材料的变形机理影响很大.0K温度下由于缺乏热激活软化的影响, 粒子运动所受到的阻碍较大, 薄膜的强度较高, 塑性变形主要来自于粒子的短程滑移.温度升高,粒子的热运动加剧,屈服强度降低, 塑性变形将主要来自于大范围的位错长程扩展.多晶薄膜的模拟结果表明, 虽然其晶粒形状较为特殊, 但是它仍然遵循反Hall-Petch关系.在模拟过程中,侧向应力最大值比拉伸方向应力的最大值滞后出现.位错只会从晶界产生并向晶粒内部传播,晶粒间界滑移是多晶薄膜塑性变形的主要来源. 关键词: 纳米薄膜 变形机理 温度效应 分子动力学  相似文献   

10.
应用晶体相场法研究大角度晶界在外加应力作用下温度对位错运动的影响。研究表明,大角度晶界在应力作用下会发生形状变化;当变形达到临界应变时,晶界褶皱处产生位错并发射进入晶粒内部;温度较低时,晶界处位错形核所需的临界应变更大。在应力作用下大角度晶界通过改变曲率和位错运动产生迁移,温度较高时有利于晶界迁移。  相似文献   

11.
Nanocrystalline (nc) materials are characterized by a typical grain size of 1-100nm. The uniaxial tensile deformation of computer-generated nc samples, with several average grain sizes ranging from 5.38 to 1.79nm, is simulated by using molecular dynamics with the Finnis-Sinclair potential. The influence of grain size and temperature on the mechanical deformation is studied in this paper. The simulated nc samples show a reverse Hall-Petch effect. Grain boundary sliding and motion, as well as grain rotation are mainly responsible for the plastic deformation. At low temperatures, partial dislocation activities play a minor role during the deformation. This role begins to occur at the strain of 5%, and is progressively remarkable with increasing average grain size. However, at elevated temperatures no dislocation activity is detected, and the diffusion of grain boundaries may come into play.  相似文献   

12.
Even at ambient temperature or less, below their 0.2% proof stresses all hexagonal close-packed metals and alloys show creep behaviour because they have dislocation arrays lying on a single slip system with no tangled dislocation inside each grain. In this case, lattice dislocations move without obstacles and pile-up in front of a grain boundary. Then these dislocations must be accommodated at the grain boundary to continue creep deformation. Atomic force microscopy revealed the occurrence of grain boundary sliding (GBS) in the ambient-temperature creep region. Lattice rotation of 5° was observed near grain boundaries by electron backscatter diffraction pattern analyses. Because of an extra low apparent activation energy of 20 kJ/mol, conventional diffusion processes are not activated. To accommodate these piled-up dislocations without diffusion processes, lattice dislocations must be absorbed by grain boundaries through a slip-induced GBS mechanism.  相似文献   

13.
Strain induced grain boundary premelting in bulk copper bicrystals   总被引:1,自引:0,他引:1  
In bulk bicrystals strain induced grain boundary premelting (SIGBPM) occurs when heavy screw dislocation pileup can be held up to a certain high temperature, approximately 0.6T M, where T M is the melting point of bulk material in Kelvin. SIGBPM occurs at grain boundaries to which new twist component is added due to the rotation of both component crystals toward opposite direction about the axis perpendicular to the grain boundary plane. At the original grain boundary, grain boundary sliding takes place due to this relative rotation. In f.c.c. metals with relatively low stacking fault energies such as copper, nickel, brass(30Zn) and silver, dislocations dissociate into partials. Therefore high density tangled dislocations introduced during plastic deformation hardly loose. If these dislocations can be held to high temperatures, SIGBPM is promoted. Formation of static or dynamic recrystallized grains suppresses SIGBPM itself and the propagation of grain boundary cracks formed by SIGBPM.  相似文献   

14.
K.S. Ng  A.H.W. Ngan 《哲学杂志》2013,93(33):3013-3026
The deformation of micron-sized single-crystals is jumpy and stochastic, and this may pose potential formability and reliability problems if components for future micro-machines are to be made from small metal volumes. In this work, micron-sized bi-crystal pillars were fabricated by focussed ion-beam milling from grain-boundary regions in coarse-grained polycrystalline aluminium. Each bi-crystal pillar contained a grain boundary intersecting its top surface, and was subjected to compression using a flat-ended nanoindenter tip. Their deformation was found to have smaller strain bursts, fewer periods of strain hardening at elastic-like rates, as well as greater work-hardening rate and flow stress, than single-crystal pillars of similar sizes. Transmission electron microscopy revealed severe dislocation accumulation in the deformed bi-crystal pillars, whereas the residual dislocation density remained low in single-crystal micro-pillars of similar dimensions after deformation to comparable strains. The results suggest that a grain boundary inside a micro-specimen can trap dislocations inside the specimen, leading to a significant rise in the strain-hardening rate as well as to smoother deformation.  相似文献   

15.
In situ straining in the transmission electron microscope and diffraction-contrast electron tomography have been applied to the investigation of dislocation/grain boundary and dislocation/twin boundary interactions in α-Ti. It was found that, similar to FCC materials, the transfer of dislocations across grain boundaries is governed primarily by the minimization of the magnitude of the Burgers vector of the residual grain boundary dislocation. That is, grain boundary strain energy density minimization determines the selection of the emitted slip system.  相似文献   

16.
Strain-dependent deformation behavior in nanocrystalline metals   总被引:1,自引:0,他引:1  
The deformation behavior as a function of applied strain was studied in a nanostructured Ni-Fe alloy using the in situ synchrotron diffraction technique. It was found that the plastic deformation process consists of two stages, undergoing a transition with applied strain. At low strains, the deformation is mainly accommodated at grain boundaries, while at large strains, the dislocation motion becomes probable and eventually dominates. In addition, current results revealed that, at small grain sizes, the 0.2% offset criterion cannot be used to define the macroscopic yield strength any more. The present study also explained the controversial observations in the literature.  相似文献   

17.
Grain boundary processes during plastic deformation of bicrystals were studied by TEM. Two methods were used. In situ straining in the electron microscope followed by post mortem examination and post mortem observation of specimens previously deformed by in situ synchrotron radiation X-ray topography. Two mechanisms governing slip propagation across a coherent twin boundary in a Fe-Si alloy bicrystal were identified. The first mechanism is a dissociation of a slip dislocation with the Burgers vector lying parallel to the boundary into three equal grain boundary dislocations. The second mechanism is a decomposition of a slip dislocation with Burgers vector inclined to the boundary into a dislocation mobile in the other grain and two screw grain boundary dislocations.  相似文献   

18.

Kiritani et al. have observed a large number of small vacancy clusters without dislocations at the tip of torn portions of fcc metals such as Au, Ag, Cu and Ni. Small vacancy clusters, rather than dislocation cell structures, have also been observed after high-speed compressive deformation, suggesting the possibility of plastic deformation without dislocations. In this paper, in order to investigate the mechanism of deformation without dislocations, change in formation energy of point defects under high internal stress was estimated by computer simulation. Elastic deformation up to - 20% strain was found to provide a remarkable lowering of formation energy of point defects. For example, when Ni is subjected to elastic strain, the formation energy of an interstitial atom decreases to 40% that without strain and the formation energy of a vacancy decreases to 51% that without strain. The number of point defects formed under thermal equilibrium during deformation was evaluated. The number was judged to be insufficient for explaining the formation of vacancy clusters as observed in experiments.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号