首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 218 毫秒
1.
用HeCd激光器的4416nm线激发Na2分子到B1Πu电子态,记录了Na原子的跃迁和Na2分子的A1Σ+u-Χ1Σ+g的谱带。由Na与Na2激发态发射的光谱及其强度可以认定在NaNa2系统中的碰撞过程,Na原子线是Na2(B1Πu)到Na(3P)的碰撞能量转移产生的,预解离过程也可产生原子线。而A1Σ+u-Χ1Σ+g谱带是由B1Πu到21Σ+g的碰撞转移后再由21Σ+g到A1Σ+u的辐射而引起的。在360℃,根据辐射衰变率和荧光强度,得到Na2(B1Πu)到Na2(21Σ+g)碰撞转移率系数为57×10-10cm3·s-1,而B1Πu的预解离率为27×106s-1。  相似文献   

2.
用532 0nm激光激发Na2分子到B1Πu电子态,记录了Na(3P)原子的跃迁和Na2分子的A1Σ u-Χ1Σ g的谱带。由Na与Na2激发态发射的光谱及其强度可以认定在Na-Na2系统中的碰撞过程,Na(3P)原子线是Na2(B1Πu)到Na(3P)的碰撞能量转移产生的,预解离过程也可产生原子线。而A1Σ u的辐射而引起的。在360℃,u-Χ1Σ g到A1Σ g谱带是由B1Πu到21Σ g的碰撞转移后再由21Σ 根据辐射衰变率和荧光强度,得到Na2(B1Πu)到Na2(21Σ g)碰撞转移率系数为7 1×10-10cm3s-1,而B1Πu的预解离率为2 3×106s-1。  相似文献   

3.
在Cs2密度约为2×1013 cm-3的纯Cs样品池中,脉冲激光激发Cs2(X1 Σg+)至B 1Πu态,利用原子和分子荧光光谱方法研究了Cs2(B 1Πu)+Cs(6S)的碰撞激发转移过程.用736 nm激发Cs2到B 1Πu(v<10),这时预解离不发生.由B 1Πu→X1 Σg+时间分辨跃迁信号得到B 1Πu态的辐射寿命为(35±7)ns,B1Πu态与Cs原子碰撞转移总截面为(4.0±0.5)×10-14 cm2.用705 nm激发至B 1Πu(v>30)态,这时发生预解离,在不同的Cs密度下,测量了I(D1),I(D2)和分子带的时间积分荧光的相对强度,得到了预解离率为(4.3±1.7)×105 s-1(对预解离到6P3/2)和(4.7±1.9)×106 s-1(对预解离至6P1/2);碰撞转移截面为(0.45±0.18)×10-14 cm2(对转移到6 P1/2)和(4.3±1.7)×10-14 cm2(对转移到6P3/2).结果表明,如果B 1Πu(v)是束缚的,6P原子由碰撞转移产生;如果B 1Πu(v)是预解离的,则6P原子由预解离和碰撞转移产生.  相似文献   

4.
采用从头计算方法从理论上解释了实验中双原子分子S_2(B~3Σ_u~-→X~3Σ_g~-吸收谱中谱带(18,0)开始出现的弥散现象.计算了包含自旋-轨道耦合(SOC)的B3Σu-和排斥的15Πu,23Σu 态的电子势能曲线.对于(18,0)谱带开始弥散,给出了与其他文献不同的物理解释.计算结果表明B3Σu-与15Πu,23Σu 态的SOC作用导致预解离对谱带的弥散起着决定作用,并与实验结果作了比较,符合很好.  相似文献   

5.
使用SAC/SAC-CI方法,利用6-311 g,6-311g**及cc-PVTZ等基组,对Na2分子的基态(X1Σg )、第一激发态(A1Σu )和第二激发态(B1Πu)的平衡结构和谐振频率进行计算.通过对3个基组的计算结果的比较,得出6-311g**基组为3个基组中最优基组的结论;使用6-311g**基组,分别利用SAC的GSUM(Group Sum of Operators)方法对基态(X1Σg ),SAC-CI的GSUM方法对激发态(A1Σu )和(B1Πu)进行单点能扫描计算,用正规方程组拟合Murrell-Sorbie函数,得到相应电子态的完整势能函数.用得到的势能函数计算与基态(X1Σg ),第一激发态(A1Σu )和第二激发态(B1Πu)相对应的光谱常数(Be,αe,ωe和ωeχe),结果与实验数据基本吻合.  相似文献   

6.
研究了CS2 分子1B2 (1Σ+u )预离解态线形势垒下的g振动能级光解动力学,包括预解离寿命、产物振转布居、平动振动转动能量分配和解离通道分支比.在实验过程中,一束可调谐激光激发超声射流冷却的CS2 分子到1B2 (1Σ+u )电子态,光解产物CS用另一束可调谐激光通过激光诱导荧光(LIF)方法检测.通过拟合光解碎片激发谱的谱峰轮廓,获得了源于不同跃迁初始态的1B2 (1Σ+u )态g振动能级的预解离寿命.通过分析CS的LIF光谱,则获得了不同光解波长下CS碎片的v=0~8振动态布居、v=1、4 ~8振动态的转动布居、能量分配以及两个预解离通道CS(X1Σ+ ) +S(3PJ)和CS(X1Σ+ ) +S(1D2 )的分支比.实验还考察了初始态弯曲振动量子数v2″、振动角动量量子数l对解离动力学的影响.发现v2″的影响不大,而l的影响却是明显的.较大的l(=K)对应于较短的寿命和较小的通道分支比S(3PJ) /S(1D2 ),即大的l(=K)有利于预解离的发生,同时更有利于产生S(1D2 ).  相似文献   

7.
在209.5~216nm,采用光解碎片激发(PHOFEX)谱技术,对CS2分子1B2(1Σ+u)态预解离寿命进行了 考察.测量在超声射流中进行.信号来自解离碎片CS(A1Π,v′=0←X1Σ+,v″=0)Q支带头的激光诱导荧光 (LIF).预解离寿命是通过对谱带进行拟合来提取的.拟合中假定基态转动布居为Boltzmann分布,寿命加宽的转 动谱线为Lorentz线形.通过拟合共获得1B2(1Σ+u)态13个跃迁所对应的预解离寿命,其中6个数据是新得到的. 结果表明,基态振动角动量量子数l或激发态转动角量子数K(K=l)对预解离寿命有明显的影响.对于激发态的 同一振动能级,较大的K对应于较短的预解离寿命.实验中采用可加热的射流喷嘴,用以提高热带激发的强度, 以改善对较大转动角量子数K的影响的考察.  相似文献   

8.
爆轰驱动过程中产生的高温高压气流对铝质膜片、激波管壁产生烧蚀和冲刷作用,以致激波管壁、端盖上附有氧化铝等杂质,而高温下AlO自由基在气体分子的高速碰撞下被激发并产生强烈的辐射,从而干扰了高温气体辐射光谱的分析。用爆轰驱动加热技术将空气加热到4 000~7 000 K,利用多通道光学分析仪对AlO自由基辐射光谱进行分析,实验发现在460~530 nm波长范围内有多支辐射非常强烈的AlO自由基B2Σ+-X2Σ+(T00=20 689 cm-1)带系辐射谱带,且每支谱带都由多个带头组成,带头间隔约为2 nm,带头处于高频位置并向低频方向伸延。通过实验与理论计算相结合,重点分析了AlO自由基B2Σ+-X2Σ+带系辐射光谱的结构特征。AlO自由基C2Πr-X2Σ+(T00=33 047 cm-1)带系辐射光谱处于270~335 nm波长范围内,其辐射强度相对于B2Σ+-X2Σ+带系较弱,并且与OH基A2Σ+-X2Π(T00=32 682 cm-1)带系辐射光谱互相干扰而难以分辨,对该波段高温空气的辐射光谱分析产生不利的影响。  相似文献   

9.
用一束波长为 2 10 .2 7nm的激光将CS2 分子激发至预离解态1B2 (1Σ+ u) ,用另一束激光通过激光诱导荧光 (LIF)方法检测碎片CS ,在 2 5 0 .5~ 2 86 .5nm获得了CS碎片A1Π←X1Σ+ 振转分辨的激发谱 .通过对光谱强度的分析 ,获得了CS碎片v″ =0~ 8的振动布居和v″=1,4~ 8振动态的转动布居 .结果发现 ,碎片CS的振动布居呈双模结构 ,分别对应于CS2 分子1B2 (1Σ+ u)态的两个解离通道 ,即CS(X1Σ+ ,v″=0~ 9) +S(3 PJ)和CS(X1Σ+ ,v″ =0~ 1)+S(1B2 ) .由此得到两个解离通道的分支比S(3 PJ) :S(1B2 )为 5 .6± 1.2 .与前人 193nm处的研究结果相比 ,2 10 .2 7nm激发更有利于S(3 PJ)通道的生成 .此外 ,实验还发现CS的转动布居不满足热平衡分布 ,为两个Boltzmann分布的合成  相似文献   

10.
用483.2nm的电离激光使CS2分子经由[3+1]REMPI制备出CS2+(X~2Πg,3/2)后,在270~285nm扫描解离激光获得了CS2+经由~B2Σu+←X~2Πg,3/2跃迁的光倒空和光碎片激发谱,由此给出了CS2+~B2Σu+电子态的振动频率ν1=613cm-1和2ν2=707cm-1.分析表明,正是CS2+的[1+1]双光子光激发解离过程导致了母体离子CS2+的光倒空和光解离成碎片离子CS+和S+,该过程中光碎片离子的分支比CS+/S+大约为3.  相似文献   

11.
Theoretical investigation of low-lying electronic states and B 3Σu-X3Σg- transition properties of selenium dimer using size-extensivity singly and doubly excitation multireference configuration interaction theory with nonrelativistic all-electron basis set and relativistic effective core potential plus its split valence basis set is presented in this paper. The spectroscopic constants of ten low-lying Λ-S bound states have been obtained and compared with experiments. Spin-orbit calculations for coupling between B3Σu- sates and repulsive 1Πu,5Πu states have been made to interpret the predissociation mechanisms of the B3Σu- state. The lifetimes of B3Σu-(ν=0~6) have been calculated with scalar relativistic effects included or excluded,respectively,and reasonably agree with experimental values.  相似文献   

12.
采用激光诱导荧光技术对InCl分子C1Π1→X1Σ+荧光光谱进行了分析和归属, 在发射谱中探测到ν′=1向下的跃迁, 证明C态预离解只能发生在ν′=1之上。 并对C1Π1→X1Σ+的荧光衰变曲线进行了观测, 得到InCl分子C1Π1(ν′=1)态的无碰撞辐射寿命τ0≈11 ns及电子跃迁矩|Re|2≈5.95D2。  相似文献   

13.
我们用脉冲光学-光学双共振荧光激发谱(OODR),测量了在35 500~38 000 cm-1能量范围内的里德堡态,观察到7Li231Πg态的10个振动能级.本文对观测的31Пg态的146条激发谱线进行了归属,得到了新的Dunham常数,RKR势能曲线以及A1Σ+u到31Πg态跃迁的夫兰克-康登因子,并且讨论了31Πg态的双重分裂以及与附近里德堡态F(4)1Σ+g,51Σ+g,61Σ+g和G(2)1Πg的微扰.发现在我们的实验精度下(0.2 cm-1) 31Πg态的双重分裂可以忽略.  相似文献   

14.
用一束波长为360.55nm的激光,通过N2O分子的(3+1)共振多光子电离(REMPI)过程制备纯净且布居完全处于X2Π(000)态的母体离子N2O+,然后用另一束波长在275—328nm范围内的可调谐激光将制备的N2O+离子激发至预解离电子态A2Σ+.实验发现,由于解离碎片NO+所具有的一定的反冲速度,其TOF质谱峰明显比N2O+母体宽.通过分析NO+碎片TOF质谱峰形状,得到了解离产物的总平均平动能〈ET〉;通过考察〈ET〉随光解能量的变化,发现光解能量在32000cm-1附近约250cm-1的变化 关键词: N2O+离子A2Σ+态 TOF质谱峰 预解离机理  相似文献   

15.
用一束波长为360.55nm的激光,通过N2O分子的(3 1)共振增强多光子电离过程制备纯净的母体离子N2O^ X^2Π3/2,1/2(000).用另一束可调谐激光将N2O^ 离子激发至预解离态A^2Σ^ ,利用飞行时间质谱检测解离碎片NO^ 离子强度随光解光波长的变化,在278—328nm波长范围内获得了光解碎片的激发(PHOFEX)谱.观测到了N2O^ 离子A^2Σ^ ←X^2Π电子跃迁较丰富的振动谱带.通过对PHOFEX光谱的标识,获得了A^2Σ^态较准确和全面的分子光谱常数.  相似文献   

16.
脉冲激光激发NaK 2~1Σ~+←1~1Σ~+跃迁,单模Ti宝石激光器激发2~1Σ~+至高位态6~1Σ~+,研究了6~1Σ~+与H_2碰撞中的碰撞转移。3D→4P(1.7μm)和5S→4P(1.24μm)荧光发射说明了预解离和碰撞解离的产生。在不同的H_2密度下,通过以上能级的荧光测量得到了预解离率,碰撞解离及碰撞转移速率系数Γ_(3D)~P=(5.3±2.5)×10~8 s~(-1),Γ_(5S)~P=(3.1±1.5)×10~8 s~(-1),k_(3D)=(3.7±1.7)×10~(-11)cm~3·s~(-1),k_(5S)=(2.9±1.4)×10~(-11)cm~3·s~(-1),k_(4P→4S)=(1.1±0.5)×10~(-11)cm~3·s~(-1),k_(3D→4P)=(6.5±3.1)×10~(-12)cm~3·s~(-1),k_(5S→4P)=(4.1±1.9)×10~(-12)cm~3·s~(-1)在不同H_2密度下,记录时间分辨荧光,由Stern-Volmer公式得到6~1Σ~+→2~1Σ~+,2~1Σ~+→1~1Σ~+的自发辐射寿命分别为(28±10)ns和(15±4)ns。6~1Σ~+→2~1Σ~+6~1Σ~+→1~1Σ~+及2~1Σ~+→1~1Σ~+分子态间与H_2的碰撞转移速率系数分别为(1.8±0.6)×10~(-11)cm~3·s~(-1),(1.6±0.5)×10~(-10)cm~3·s~(-1)和(6.3±1.9)×10~(-11)cm~3·s~(-1)。转移到H_2的振动、转动和平动能各占总转移能的0.58,0.03和0.39。主要能量转移至振动和平动能,支持6~1Σ~+-H_2间的共线型碰撞机制。  相似文献   

17.
邢伟  孙金锋  施德恒  朱遵略 《物理学报》2018,67(6):63301-063301
采用考虑Davidson修正的内收缩多参考组态相互作用(icMRCI+Q)方法,结合相关一致基组aug-ccpV5Z和aug-cc-pV6Z,计算了BF+离子前两个离解极限B~+(~1S_g)+(~2P_u)和B+(~3P_u)+F(~2P_u)对应的14个Λ-S态(X~2Σ~+,1~2Π,2~2Π,2~2Σ~+,1~4Σ~+,1~4△,1~4Σ~-,1~2△,1~2Σ~-,3~2Σ~+,1~4Π,2~4Π,2~4Σ~+和3~2Π)和30个Ω态的势能曲线.在势能曲线的计算中,考虑了旋轨耦合效应、核价相关和标量相对论修正以及将参考能和相关能分别外推至完全基组极限.基于得到的势能曲线,获得了束缚和准束缚的12个A-S态和28个Ω态的光谱常数,并且X~2Σ~+态的光谱常数与已有的实验结果符合.此外,计算了BF分子X~1Σ~+态到BF+离子X~2Σ~+,1~2Π和2~2Σ~+态的垂直电离势和绝热电离势,并且BF~+(X~2Σ~+)←BF(X~1Σ~+)的垂直电离势和绝热电离势与相应的实验结果非常符合.由X~2Σ~+,2~2Π,1~4Σ~+,3~2Σ~+和3~2Π态和其他的激发A-S态势能曲线的交叉现象,借助于计算的旋轨耦合矩阵元,首次分析了X~2Σ~+和3~2Π态的预解离机理以及2~2Π(v′≥9),1~4Σ~+(v′≥4)和3~2Σ~+(v′≥4)的振动能级受到其他电子态的微扰.计算了30个Ω态离解极限处的相对能量,并且与实验结果十分符合.最后计算了2~2Π(v′=0—9)—X~2Σ~+,2~2Σ~+(v′=0—2)—X~2Σ~+,(3)1/2—(1)1/2~(势阱一)和(2)3/2(v′=0—9)—(1)1/2~(势阱一)跃迁的Franck-Condon因子、爱因斯坦自发辐射系数和辐射寿命.  相似文献   

18.
沙国河及其工作组于1995年发表了CO A1Π(v=0)~e3∑-(v=1)与He1,Ne及其它碰撞伴的碰撞过程中转动传能的碰撞量子干涉现象,并得到了积分干涉角,陈等从理论和实验上发现了Na2(A1∑u ,v=8~b3Π0u,v=14)体系与Na(3s)碰撞的碰撞量子干涉现象,孙等计算了其积分干涉角,但是对微分干涉角没有过多的计算.本文作为对原子-双原子体系碰撞诱导转动传能的进一步理论研究,在含时一级波恩近似的基础上考虑各向异性相互作用势和长程相互作用势,计算了单叁混合态的Na2(A1∑u ,v=8-bΠ0u,v=14)体系与Na碰撞的微分干涉角,并得到了微分干涉角与碰撞参数的关系,此理论模型对理解和进行分子束实验是非常重要的.  相似文献   

19.
LiH分子X 1Σ+、 A 1Σ+和B 1Π态的势能函数   总被引:1,自引:0,他引:1  
利用SAC/SAC-CI方法,使用D95(d)、6-311G**及cc-PVTZ等基组,对LiH分子的基态(X1Σ+)、第一激发态(A1Σ+)及第二简并激发态(B1Π)的平衡结构和谐振频率进行了优化计算.通过对三个基组的计算结果的比较,得出了D95(d)基组为三个基组中的最优基组的结论;使用D95(d)基组,利用SAC的GSUM(GroupSumofOperators)方法对基态(X1Σ+)、SAC-CI的GSUM方法对激发态(A1Σ+和B1Π)进行单点能扫描计算,用正规方程组拟合Murrell-Sorbie函数,得到了相应电子态的完整势能函数;从得到的势能函数计算了与基态(X1Σ+)相对应的光谱常数,结果与实验数据较为一致.  相似文献   

20.
本文应用 Gaussian03 程序包中提供的完全活性空间自洽场 (CASSCF) 方法, 采用标准基组 6-311++G(3d,2p) 对 BH 分子Χ1Σ+ 和 B1Σ+ 态势能曲线进行了单点能计算. 在此基础上, 利用相关理论将计算结果拟合到 Murrell-Sorbie 函数得到了与各电子态相对应的光谱常数和力常数, 并将计算结果与实验和其他理论结果进行了比较. 同时, 我们还利用光谱常数与力常数以及 Murrell-Sorbie 函数之间的关系计算了与实验光谱数据相对应的力常数和 Murrell-Sorbie 函数, 并与 CASSCF 结果进行了比较得出了一些有价值的结论. 最后, 对于具有双极小值的B1Σ+ 态给出了更精确的定量的信息.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号