首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 54 毫秒
1.
翟惠  徐世祥  许智雄  蔡华  杨旋  吴昆  曾和平 《物理学报》2007,56(5):2821-2827
基于非共线光参量放大(NOPA),以宽带794nm飞秒激光的倍频光为抽运光,以连续的He-Ne激光为信号光,产生了与宽带794nm飞秒激光精确同步的无直流背底的1064nm的脉冲光.实验结果显示该1064nm的光脉冲可作为光参量啁啾脉冲放大系统的抽运激光链的种子光,从而实现用全光学方法实现OPCPA系统抽运光和信号光的精确同步.还将非共线光参量放大器置于经特殊设计的He-Ne激光腔内,也同样成功得到了无直流背底的1064nm的光脉冲.经一次光参量放大后所得到的1064nm光的光谱和空间啁啾特性与非共线光参量放大器置于He-Ne激光腔外时得到的1064nm的光脉冲相同,而其单脉冲能量约为腔外NOPA的10倍. 关键词: 非线性光参量放大 光参量啁啾脉冲放大 时间同步  相似文献   

2.
We demonstrate the generation of phase-coherent frequency combs in the vacuum utraviolet spectral region. The output from a mode-locked laser is stabilized to a femtosecond enhancement cavity with a gas jet at the intracavity focus. The resulting high-peak power of the intracavity pulse enables efficient high-harmonic generation by utilizing the full repetition rate of the laser. Optical-heterodyne-based measurements reveal that the coherent frequency comb structure of the original laser is fully preserved in the high-harmonic generation process. These results open the door for precision frequency metrology at extreme ultraviolet wavelengths and permit the efficient generation of phase-coherent high-order harmonics using only a standard laser oscillator without active amplification of single pulses.  相似文献   

3.
Bartels A  Kurz H 《Optics letters》2002,27(20):1839-1841
A five-element Ti:sapphire femtosecond ring oscillator emitting a broadband continuum that ranges from 560 to 1150 nm at -50 dB below the maximum with a repetition rate of 1 GHz is demonstrated. The key element is a slightly convex cavity mirror that increases the self-amplitude modulation of a short pulse inside the resonator. Flat negative intracavity group-delay dispersion is required only for the core spectral part of the pulse. We believe that the device presented will make optical frequency metrology and future optical atomic clocks simpler and more stable. Within the reported ultrabroad spectrum a distinct strong emission band near 655 nm occurs that can be extracted to a powerful femtosecond pulse source far out of the amplification of Ti:sapphire.  相似文献   

4.
Jones RJ  Ye J 《Optics letters》2004,29(23):2812-2814
We demonstrate a general technique for enhancement of femtosecond pulses from a pulse train through their coherent buildup inside a high-finesse cavity. Periodic extraction of the intracavity pulse by means of a fast switch provides a net energy gain of 42 to >70 times for 38-58-fs pulse durations. Starting with an actively stabilized but otherwise standard mode-locked laser system, we demonstrate pulses of >200-nJ energy.  相似文献   

5.
Intrinsic to the process of high-order harmonic generation is the creation of plasma and the resulting spatiotemporal distortions of the driving laser pulse. Inside a high-finesse cavity where the driver pulse and gas medium are reused, this can lead to optical bistability of the cavity-plasma system, accumulated self-phase modulation of the intracavity pulse, and coupling to higher-order cavity modes. We present an experimental and theoretical study of these effects and discuss their implications for power scaling of intracavity high-order harmonic generation and extreme ultraviolet frequency combs.  相似文献   

6.
We report an enhancement cavity for femtosecond Ti:sapphire laser at the repetition rate of 170 MHz. An enhancement factor of 24 is obtained when the injecting pulses have an average power of 1 W and a pulse duration of 80 fs. By placing a BBO crystal at the focus of the cavity, we obtain a 392-m W intracavity doubled-frequency laser, corresponding to a conversion efficiency of 43%. The output power has a long-term stability with a root mean square(RMS) of 0.036%.  相似文献   

7.
Femtosecond enhancement cavity(fsEC) has been proved to be a powerful tool in a diverse range of applications.Here, we report the recent progresses in building an fsEC on kilowatt level average power, with the aim of realization of intracavity high harmonic generation(HHG) and extension of the wavelength of femtosecond optical frequency comb from infrared(IR) to extreme ultraviolet(XUV). Upon mode-matching optimization and cavity length locking, an intracavity average power of 6.08 kW is reached and the corresponding buildup is 225. After introducing noble gas of Xe into the focus region, clear sign of plasma has been observed. The generated HHG is also coupled out by a sapphire plate placed at Brewster's angle for the fundamental laser. Our work paves the way for the realization of an XUV comb.  相似文献   

8.
Cavity-enhanced direct frequency comb spectroscopy combines broad spectral bandwidth, high spectral resolution, precise frequency calibration, and ultrahigh detection sensitivity, all in one experimental platform based on an optical frequency comb interacting with a high-finesse optical cavity. Precise control of the optical frequency comb allows highly efficient, coherent coupling of individual comb components with corresponding resonant modes of the high-finesse cavity. The long cavity lifetime dramatically enhances the effective interaction between the light field and intracavity matter, increasing the sensitivity for measurement of optical losses by a factor that is on the order of the cavity finesse. The use of low-dispersion mirrors permits almost the entire spectral bandwidth of the frequency comb to be employed for detection, covering a range of ~?10% of the actual optical frequency. The light transmitted from the cavity is spectrally resolved to provide a multitude of detection channels with spectral resolutions ranging from several gigahertz to hundreds of kilohertz. In this review we will discuss the principle of cavity-enhanced direct frequency comb spectroscopy and the various implementations of such systems. In particular, we discuss several types of UV, optical, and IR frequency comb sources and optical cavity designs that can be used for specific spectroscopic applications. We present several cavity-comb coupling methods to take advantage of the broad spectral bandwidth and narrow spectral components of a frequency comb. Finally, we present a series of experimental measurements on trace gas detections, human breath analysis, and characterization of cold molecular beams. These results demonstrate clearly that the wide bandwidth and ultrasensitive nature of the femtosecond enhancement cavity enables powerful real-time detection and identification of many molecular species in a massively parallel fashion.  相似文献   

9.
赵研英  韩海年  滕浩  魏志义 《物理学报》2009,58(3):1709-1714
通过在钛宝石激光腔内引入望远镜长腔系统增加腔长,实现了重复频率低到10?MHz的飞秒激光振荡,在5?W的抽运功率下获得了平均输出功率200?mW、单脉冲能量20?nJ的稳定输出. 在此基础上分析了腔内不同色散情况下的输出脉冲光谱和脉宽特性,结果表明在腔内存在一定负色散的情况下,锁模脉宽可接近转换极限,最短脉宽可达56?fs. 而在正色散的情况下,锁模输出的脉宽较宽,并且随着腔内正色散的增多,脉宽可到大于600?fs,锁模光谱也呈马鞍形. 关键词: 钛宝石激光器 飞秒脉冲 低重复频率 望远镜腔  相似文献   

10.
Jones RJ  Ye J 《Optics letters》2002,27(20):1848-1850
By simultaneously controlling repetition and carrier frequencies, one can achieve the phase coherent superposition of a collection of successive pulses from a mode-locked laser. An optical cavity can be used for coherent delay and constructive interference of sequential pulses until a cavity dump is enabled to switch out the amplified pulse. This approach will lead to an effective amplification process through decimation of the original pulse rate while the overall coherence from the oscillator is preserved. Detailed calculations show the limiting effects of intracavity dispersion and indicate that enhancement of sub-100-fs pulses to microjoule energies is experimentally feasible.  相似文献   

11.
We demonstrated experimentally a synchronously pumped intracavity frequency-doubled femtosecond optical parametric oscillator (OPO) using a periodically-poled lithium niobate (PPLN) as the nonlinear material in combination with a lithium triborate (LBO) as the doubling crystal. A Kerr-lens-mode-locked (KLM) Ti:sapphire oscillator at the wavelength of 790 nm was used as the pump source, which was capable of generating pulses with a duration as short as 117 fs. A tunable femtosecond laser covering the 624-672 nm range was realized by conveniently adjusting the OPO cavity length. A maximum average output power of 260 mW in the visible range was obtained at the pump power of 2.2 W, with a typical pulse duration of 205 fs assuming a sech2 pulse profile.  相似文献   

12.
We present the first (to our best knowledge) femtosecond enhancement cavity in the visible wavelength range for ultraviolet frequency comb generation. The cavity is seeded at 518 nm by a frequency-doubled Yb fiber laser and operates at a peak intensity of 1.2×10(13) W/cm(2). High harmonics of up to the ninth order (~57 nm) are generated in an intracavity xenon gas jet. Intracavity high harmonic powers of several milliwatts for the third harmonic order and microwatts for the fifth harmonic order prove the potential of the "green cavity" as an efficient ultraviolet frequency comb source for future spectroscopic experiments. A limiting degradation effect of the cavity mirrors is avoided by operating at a constant oxygen background pressure.  相似文献   

13.
Phase properties of optical thin film interference filters are discussed from the aspect of their usage for phase-error free wavelength separation of broadband femtosecond laser pulses. It is shown that both transmissive or reflective interference filters with high contrast ratios exhibit high cubic phase shifts on transmission or reflection, respectively, causing intolerable distortion in the temporal pulse shape. We show, however, that high efficiency wavelength separation of broadband femtosecond laser pulses can be achieved by using low contrast, properly designed reflective optical interference filters directly built into the cavity of the broad spectrum, femtosecond pulse lasers or parametric oscillators. For demonstrative purposes, we implemented the idea for a Kerr-lens mode-locked Ti:sapphire laser, and obtained two-color, inherently synchronized, unchirped, femtosecond pulse outputs from a single laser oscillator.  相似文献   

14.
We report efficient generation of tunable femtosecond pulses in the ultraviolet (UV) by intracavity doubling of a visible femtosecond optical parametric oscillator (OPO). The OPO, based on a 400 microm BiB3O6 crystal and pumped at 415 nm in the blue, can provide visible femtosecond signal pulses across 500-710 nm. Using a 500 microm crystal of beta-BaB2O4 internal to the OPO cavity, efficient frequency doubling of the signal pulses into the UV is achieved, providing tunable femtosecond pulses across 250-355 nm with up to 225 mW of average power at 76 MHz. Cross-correlation measurements result in UV pulses with durations down to 132 fs for 180 fs blue pump pulses.  相似文献   

15.
Self-compression of multi-millijoule femtosecond laser pulses and dramatic increase of the peak intensity are found in pressurized helium and neon within a range of intensity in which the ionization modification of the material parameters by the pulse is negligible. The pulse propagation is studied by the (3 + 1)-dimensional nonlinear Schrödinger equation including basic lowest order optical processes - diffraction, second order of dispersion, and third order of nonlinearity. Smooth and well controllable pulse propagation dynamics is found. Construction of compressed pulses of controllable parameters at given space target point by a proper chose of the pulse energy and/or gas pressure is predicted.  相似文献   

16.
Wakefield generation by a femtosecond laser pulse is described in the frame of the slowly varying amplitudes approximation. The amplitude of the wakefield A, is studied as a function of laser pulse and background gas parameters, and is compared with well-known results for preformed, completely ionized plasma Ap,i. It is found that the ionization processes can increase Ap as compared to Ap,i at comparatively high laser peak intensities. It is shown that the increase of the wakefield amplitude due to gas ionization is more pronounced for circularly polarized laser pulses than for linearly polarized laser pulses. The strongest enhancement of Ap in comparison with Ap,i takes place for longer laser pulses with a duration in excess of the plasma wave period when the resonant conditions for ponderomotive excitation of the wakefield are not matched. Thus, ionization processes can expand the region of parameters for efficient generation of the laser wakefields  相似文献   

17.
Min CK  Joo T 《Optics letters》2005,30(14):1855-1857
We demonstrate a high-energy near-infrared cavity-dumped femtosecond optical parametric oscillator (OPO) based on periodically poled lithium niobate. The laser generates 90 nJ pulses at a repetition rate of up to 1 MHz when synchronously pumped by 800 mW output from a femtosecond Ti:sapphire laser. The laser is broadly tunable from 1.0 to 1.5 microm in the signal branch, with a pulse duration of < 60 fs at 1.2 microm. High intracavity power is achieved by running the laser in the regime of positive group-velocity dispersion.  相似文献   

18.
We demonstrate intracavity frequency doubling of a standard femtosecond Ti:sapphire oscillator. The cavity is extended with a pair of focusing mirrors and a 0.5-mm-thick BBO crystal. We achieve a repetition rate of 50 MHz and simultaneously generate 22 mW of 55-fs pulses at 810 nm and 200 mW of 73-fs pulses at 405 nm, which corresponds to 4 nJ per pulse. We create a total of 330-mW, 405-nm light when pumping the Ti:sapphire crystal with 5.7 W from an Ar-ion laser, corresponding to a conversion efficiency of 5.7%. No saturation is found, which implies that higher outputs can be achieved with higher pump rates. Preliminary results from the use of blue pulses as pump in an optical parametric amplifier seeded by pulses from a photonic crystal fiber are presented. Received: 27 January 2003 / Revised version: 27 March 2003 / Published online: 12 May 2003 RID="*" ID="*"Corresponding author. Fax: +45-861/96199, E-mail: tva@chem.au.dk  相似文献   

19.
In this paper, we perform a shot-to-shot detailed study of how residual thermal energy correlates to the optical absorptance change due to laser-induced surface structural modifications in multi-shot femtosecond laser ablation. We observe an overall enhancement for residual thermal coupling and absorptance in air. Surprisingly, residual thermal coupling in air shows a non-monotonic dependence on pulse number and reaches a minimum value after a certain number of pulses, while these behaviors are not seen in absorptance. In vacuum, however, both suppression and enhancement are seen in residual energy coupling although absorptance is always enhanced. To explain these observations, we suggest that air plasma plays a dominant role in thermal coupling at a relatively low number of applied pulses, while the formation of a cavity plays a dominant role at a high number of pulses. PACS 78.20.Ci; 81.05.Bx  相似文献   

20.
Imperfections in the surface of intracavity elements of an optical ring resonator can scatter light from one mode into the counterpropagating mode. The phase-locking of the cavity modes induced by this backscattering is a well-known example that notoriously afflicts laser gyroscopes and similar active systems. We experimentally show how backscattering can be circumvented in a unidirectionally operated ring cavity either by an appropriate choice of the resonant cavity mode or by active feedback control. PACS 42.60.Da; 45.40.Cc; 42.79.Bh; 42.55.-f  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号