首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 984 毫秒
1.
The adsorption of alkanes and alkenes on zeolites is investigated by comparing the adsorption characteristics for three types of zeolite: ferrierite, ZSM-5, and mordenite. The activation energy for the diffusion of propane and n-butane on ferrierite and the heat of adsorption of C(2)-C(4) alkanes and alkenes on zeolites and silica are estimated based on Fourier transform infrared spectroscopy, and the diffusion processes in the micropores are elucidated by comparing the results with previously reported activation energies for n-butene diffusion. The adsorption of 1-butene on mordenite is also examined. The structure and process of experimentally observable adsorption is found to differ depending on the type of zeolite and adsorbing molecule, reflecting differences in the sizes of molecules and pores. This differing behavior is utilized to interpret the elementary adsorption processes of alkanes and alkenes on zeolites.  相似文献   

2.
The adsorption of ethene, propene, 1-butene, trans-2-butene, and isobutene on phosphotungstic acid has been characterized by density functional theory (DFT) calculations and microcalorimetric experiments. The DFT-calculated chemisorption energies to form the corresponding alkoxides for ethene, propene, 1-butene, trans-2-butene, and isobutene were -86.8, -90.3, -102.6, -79.9, and -91.4 kJ mol(-1), respectively (for their most-favorable binding modes). The relative chemisorption energies to form the alkoxides are dictated by the strength of interaction of the acidic proton with the carbon atom of the double bond that becomes protonated. The activation barrier for chemisorption was greatest for alkenes with primary (1 degrees) carbenium-like transition states followed by secondary (2 degrees) and tertiary (3 degrees) transition states. The adsorption enthalpy established from microcalorimetric experiments with propene and isobutene was approximately -100 kJ mol(-1), which is close to the DFT-calculated values. Chemisorption of ethene on phosphotungstic acid during microcalorimetric experiments was minimal, presumably because of the large activation barrier associated with a 1 degrees carbenium-like transition state. The results from this study are compared with those in the literature for the adsorption of alkenes on zeolites, which have a similar adsorption mechanism. Our results suggest that alkene adsorption is stronger on phosphotungstic acid than on zeolites, as supported by the more exothermic chemisorption energies. Additionally, activation barriers for alkene adsorption are lower over phosphotungstic acid than over zeolites.  相似文献   

3.
谢鹏  周立幸 《分子催化》1992,6(1):67-71
1.前言 在多相催化研究工作中,测定反应物分子在固体催化剂表面上化学吸附时产生的反应热,或者说化学吸附热,对研究催化剂的性质和反应物的表面化学反应都很有帮助。但是目前尚无有效的方法测定它。本文用吸附量热法测定了烯烃在USY沸石表面的吸附热,并提出了一种化学吸附热的估算方法。  相似文献   

4.
烷烃混合物在Cu-BTC中的吸附与分离   总被引:2,自引:0,他引:2  
陈丹张丽  刘迎春  王琦 《化学学报》2008,66(20):2227-2234
用巨正则系综Monte Carlo (GCMC)和构型导向Monte Carlo (CBMC)相结合的方法模拟了298 K下甲烷-乙烷-丙烷体系以及正丁烷-异丁烷体系在1,3,5-苯三甲酸铜(II) (Cu-BTC)中的吸附行为. 结果表明, Cu-BTC对丙烷以及异丁烷的吸附分离都有较好的选择性. 通过我们发展的“材料剖面成像”方法研究了烷烃混合物在Cu-BTC中不同压力下的吸附位点, 从而进一步分析了烷烃混合物在Cu-BTC中的分离性能. 结果发现, 在吸附过程中主要存在着两种效应, 即能量效应和尺寸效应的竞争. 在甲烷-乙烷-丙烷体系中, 较高压力下, 由于尺寸效应的影响, 丙烷主要吸附在主孔道中, 而对甲烷和乙烷组分, 能量效应占主导地位, 从而导致乙烷主要吸附在四面体孔内, 甲烷则主要吸附在三角形孔窗外. 在正丁烷-异丁烷体系中, 能量效应起主导作用, 从而使异丁烷主要吸附在四面体孔内, 而正丁烷主要吸附在主孔道中.  相似文献   

5.
Calorimetrically measured heats of solution of eleven hydrocarbon gases into water are reported at 15 and 25°C. Gases studied are methane, ethane, propane, n-butane, 2-methylpropane, 2,2-dimethylpropane, cyclopropane, ethene, propene, 1-butene, and ethyne. These values in combination with previous results are used to derive heat capacity changes at 25°C. Comparison of enthalpy and heat capacity values with those from other studies shows satisfactory agreement. Correlation of the heat capacity change with the number of water molecules in the first solvation shell of the solute suggests that the observed heat capacity changes are primarily due to changes in the water molecules in this solvent shell.  相似文献   

6.
Grand canonical Monte Carlo and configurational-bias Monte Carlo techniques are carried out to simulate the adsorption of ternary and quaternary mixtures of short linear alkanes, involving methane, ethane, propane, and n-butane, in pillared layered materials at ambient temperature, T=300 K. In the simulation, a pillared layered pore is modeled by a uniform distribution of pillars between two layered walls built by making two separate talc lamellas parallel each other with a given size of interlayer distance. The interaction between fluid molecules and two layered walls is measured by storing potentials calculated in advance at a series of grid points. The interaction between fluid molecules and pillars is also calculated by a site-to-site method. The potential model proposed in this work is proved to be effective because of the simulation result being good agreement with the experimental data for the adsorption of nitrogen at 77 K. Then, the adsorption isotherms of mixtures of short linear alkanes in pillared layered pores with three different porosities psi=0.98, 0.93 and 0.85, and three pore widths H=1.02, 1.70 and 2.38 nm at 300 K are obtained by taking advantage of the model. The simulation results tell us that the longer chain component is preferentially adsorbed at low pressures, and its adsorption increases and then decreases as the pressure increases while the shorter chain component is still adsorbed at high pressures. Moreover, the sorption selectivity of pillared layered materials for the longest chain component in alkane mixtures increases as the mole fraction of methane in the gas phase increases. The selectivity of pillared layered materials for the longest chain component in alkane mixtures also increases as the pore width decreases and the porosity increases.  相似文献   

7.
The determination of a number of adsorption sites on sulfonated styrene-divinylbenzene copolymer for alkenes (propene, 1-butene, 1-pentene, 1-hexene, 1-heptene, isobutene, 2-methyl-1-butene, 2-methyl-2-butene, 2-methyl-1-pentene, 2-methyl-2-pentene and 2-methyl-2-hexene) and alcohols (methanol, ethanol and n-propanol, n-butanol, 2-butanol and tert-butanol) was performed by the saturation copolymer with vapors of adsorbate, by removing the excess of adsorbate from copolymer by blowing the inert gas through copolymer bed and by the desorption of adsorbed alcohol in the programmed increase of temperature. The adsorption measurements were performed on sulfonated ion-exchange resin (Amberlyst 15) with different concentrations of the acid group, which means with a varying number of adsorption sites. The following adsorption models for alkenes were suggested: the first in which one molecule of alkene is adsorbed by two sulfonic groups, for linear alcohols, the second in which one sulfonic group can adsorb one molecule of alcohol and for non-linear alcohols the third where one molecule of alcohol is adsorbed by two or more sulfonic groups.  相似文献   

8.
C2 and C3 alkanes are selectively adsorbed from mixtures over the corresponding alkenes on the zeolite imidazolate framework ZIF-7 through a gate-opening mechanism. As a result, the direct production of the pure alkene upon adsorption and the pure alkane upon desorption in packed columns is possible. Herein, a detailed investigation of the step-wise adsorption and separation of alkanes and alkenes is presented, together with a rigorous performance assessment. A molecular picture of the gate-opening mechanism underlying the unprecedented selectivity towards alkane adsorption is proposed based on DFT calculations and a thermodynamic analysis of the adsorption-desorption isotherms.  相似文献   

9.
Small alkanes (methane, ethane, propane, n-butane) and alkenes (ethene, propene, 1-butene) were used to probe the gas-phase reactivity of doubly charged actinide cations, An(2+) (An = Th, Pa, U, Np, Pu, Am, Cm), by means of Fourier transform ion cyclotron resonance mass spectrometry. Different combinations of doubly and singly charged ions were observed as reaction products, comprising species formed via metal-ion induced eliminations of small molecules, simple adducts and ions resulting from electron, hydride or methide transfer channels. Th(2+), Pa(2+), U(2+) and Np(2+) preferentially yielded doubly charged products of hydrocarbon activation, while Pu(2+), Am(2+) and Cm(2+) reacted mainly through transfer channels. Cm(2+) was also capable of forming doubly charged products with some of the hydrocarbons whereas Pu(2+) and Am(2+) were not, these latter two ions conversely being the only for which adduct formation was observed. The product distributions and the reaction efficiencies are discussed in relation to the electronic configurations of the metal ions, the energetics of the reactions and similar studies previously performed with doubly charged lanthanide and transition metal cations. The conditions for hydrocarbon activation to occur as related to the accessibility of electronic configurations with one or two 5f and/or 6d unpaired electrons are examined and the possible chemical activity of the 5f electrons in these early actinide ions, particularly Pa(2+), is considered.  相似文献   

10.
In the adsorption of linear C1-C8 alkanes, alkenes and alcohols on zeolite chabazite, molecules smaller than 6.7 A are adsorbed in significant amounts, whereas longer chains are almost fully excluded from the micropores.  相似文献   

11.
The equilibrium adsorption of the light alkanes methane, ethane, propane, n-butane, and i-butane in silicalite-1 has been investigated using the TEOM technique. Either a conventional or a dual-site Langmuir isotherm appropriately describes the equilibrium data. Good agreement with the literature data determined by other techniques indicates the TEOM is a reliable technique. The adsorption of i-butane in silicalite-1 reveals the discrete preferential molecular siting, implying a discrete-dual-structural heterogeneity for light alkanes in silicalite-1.  相似文献   

12.
A model of core mechanism of hydrocarbon pyrolysis with good predictive ability is crucial to the development of active cooling technology for advanced aeroengines. In this work, a detailed core kinetic model of pyrolysis of C1–C4 hydrocarbon fuels is developed through the combination of a series of potential energy surfaces and validated against a series of experimental results. The kinetic model contains 103 species and 1290 reactions, and most of the kinetic and thermochemical parameters are compiled from recent highly accurate quantum chemical calculations without modification. The pressure-dependent rate constants are considered for the dissociation/association reactions, isomerization reactions, and chemically activated reactions. Simulation results for various alkanes (methane, ethane, propane, n-butane, isobutane), alkenes (ethylene, propene, 1-butene, 2-butene, isobutene, allene, 1,3-butadiene), and alkynes (acetylene, propyne, vinylacetylene) indicate that the major product distributions at various temperatures (800-2300 K) and pressures (0.8-10 atm) can be predicted well by the developed core kinetic model. Thus, the developed pyrolysis mechanism for C1–C4 hydrocarbons can be used as a cornerstone to develop the pyrolysis mechanisms of larger hydrocarbon fuels and thus support the development of thermal management in advanced aeroengines.  相似文献   

13.
A method is described for the gas chromatographic-electron-capture detection determination of alkenes via on-column bromination reactions. Pyridinium bromide perbromide (PBPB) was used as the Br2 source, and a cholesterol-glass beads mixture, treated with methanol, was used to remove excess Br2. The optimum ratio of cholesterol to glass beads was found to be 1:10, at which 93% of the bromine released from PBPB can be removed, without removal of the derivitized analytes. The conversion efficiency of alkene to the brominated derivative is extremely low (less than 2%) for ethene, whereas for propene and 1-butene it is 41 and 79%, respectively. For C3---C5 alkenes, this method is 200–300 times more sensitive than analysis of the underivitized analytes by using conventional flame ionization detection.  相似文献   

14.
The catalytic reduction of ethene, propene and 1-butene on a polycrystalline Pt electrode in strongly acidic medium containing Mo(VI) oxo-species has been examined by cyclic voltammetry taking into account the influence of perchloric acid and molybdate concentration as well as that of the scan rate on the cathodic current response. About tenfold increase in the reaction rate of each alkene investigated has been achieved at the optimum molybdate concentration of 1–2.5 mM in 4-M HClO4 solution as a supporting electrolyte in comparison with that obtained in the absence of Mo(VI) oxo-species. It was ascertained that the catalytic reduction current strongly depends on the amount of cationic Mo(VI) oxo-species at the Pt electrode/solution interface. Simultaneously, the electroreduction of cationic Mo(VI) oxo-species was found to be effectively enhanced in the presence of alkene. According to the proposed reaction pathways, alkenes are reduced to alkanes via a non-faradaic reaction with Mo(V) and/or Mo(III) cationic moieties formed in the preceding reductive electron-transfer steps from the parent cationic Mo(VI) oxo-species. Continuous regeneration of the electroactive Mo(VI) and/or Mo(V) cationic oxo-species accounts for the observed catalytic phenomenon.  相似文献   

15.
Pressure-dependent product yields have been experimentally determined for the cross-radical reaction C2H5 + C2H3. These results have been extended by calculations. It is shown that the chemically activated combination adduct, 1-C4H8*, is either stabilized by bimolecular collisions or subject to a variety of unimolecular reactions including cyclizations and decompositions. Therefore the "apparent" combination/disproportionation ratio exhibits a complex pressure dependence. The experimental studies were performed at 298 K and at selected pressures between about 4 Torr (0.5 kPa) and 760 Torr (101 kPa). Ethyl and vinyl radicals were simultaneously produced by 193 nm excimer laser photolysis of C2H5COC2H3 or photolysis of C2H3Br and C2H5COC2H5. Gas chromatograph/mass spectrometry/flame ionization detection (GC/MS/FID) were used to identify and quantify the final reaction products. The major combination reactions at pressures between 500 (66.5 kPa) and 760 Torr are (1c) C2H5+C2H3-->1-butene, (2c) C2H5 + C2H5-->n-butane, and (3c) C2H3+C2H3-->1,3-butadiene. The major products of the disproportionation reactions are ethane, ethylene, and acetylene. At moderate and lower pressures, secondary products, including propene, propane, isobutene, 2-butene (cis and trans), 1-pentene, 1,4-pentadiene, and 1,5-hexadiene are also observed. Two isomers of C4H6, cyclobutene and/or 1,2-butadiene, were also among the likely products. The pressure-dependent yield of the cross-combination product, 1-butene, was compared to the yield of n-butane, the combination product of reaction (2c), which was found to be independent of pressure over the range of this study. The [1-C4H8]/[C4H10] ratio was reduced from approximately 1.2 at 760 Torr (101 kPa) to approximately 0.5 at 100 Torr (13.3 kPa) and approximately 0.1 at pressures lower than about 5 Torr (approximately 0.7 kPa). Electronic structure and RRKM calculations were used to simulate both unimolecular and bimolecular processes. The relative importance of C-C and C-H bond ruptures, cyclization, decyclization, and complex decompositions are discussed in terms of energetics and structural properties. The pressure dependence of the product yields were computed and dominant reaction paths in this chemically activated system were determined. Both modeling and experiment suggest that the observed pressure dependence of [1-C4H8]/[C4H10] is due to decomposition of the chemically activated combination adduct 1-C4H8* in which the weaker allylic C-C bond is broken: H2C=CHCH2CH3-->C3H5+CH3. This reaction occurs even at moderate pressures of approximately 200 Torr (26 kPa) and becomes more significant at lower pressures. The additional products detected at lower pressures are formed from secondary radical-radical reactions involving allyl, methyl, ethyl, and vinyl radicals. The modeling studies have extended the predictions of product distributions to different temperatures (200-700 K) and a wider range of pressures (10(-3)-10(5) Torr). These calculations indicate that the high-pressure [1-C4H8]/[C4H10] yield ratio is 1.3+/-0.1.  相似文献   

16.
应用分子动力学方法研究了1-丁烯和正丁烷在MCM-22型分子筛(ITQ-1)中的扩散行为. 得到了两种物质在ITQ-1分子筛两个独立孔道中的均方位移曲线、自扩散系数和扩散轨迹. 计算结果表明, 在温度为400 K时, 1-丁烯或正丁烷在十元环孔道中的扩散明显低于在超笼中的扩散, 吸附质在超笼的底部和顶部的扩散明显低于在超笼中心的扩散; 1-丁烯和正丁烷在ITQ-1分子筛的超笼中两者扩散速率较为相似, 而在十元环中, 两者的扩散速率差别较大.可以推测, 选择性催化主要发生在十元环中.  相似文献   

17.
Large-scale computational screening of thirty thousand zeolite structures was conducted to find optimal structures for separation of ethane/ethene mixtures. Efficient grand canonical Monte Carlo (GCMC) simulations were performed with graphics processing units (GPUs) to obtain pure component adsorption isotherms for both ethane and ethene. We have utilized the ideal adsorbed solution theory (IAST) to obtain the mixture isotherms, which were used to evaluate the performance of each zeolite structure based on its working capacity and selectivity. In our analysis, we have determined that specific arrangements of zeolite framework atoms create sites for the preferential adsorption of ethane over ethene. The majority of optimum separation materials can be identified by utilizing this knowledge and screening structures for the presence of this feature will enable the efficient selection of promising candidate materials for ethane/ethene separation prior to performing molecular simulations.  相似文献   

18.
Adsorption equilibria of butane isomers and SF6 on Kureha activated carbon were investigated using the volumetric method and the tapered element oscillating microbalance (TEOM) technique. The isotherm data of the butane isomers measured by the TEOM technique are in good agreement with those determined by the volumetric method. Single-component adsorption isotherms are reported at temperatures in the range from 298 to 393 K and at pressures up to 120 kPa. SF6 molecules are mainly adsorbed in the larger micropores, resulting in a lower adsorption capacity. The amount adsorbed for n-butane is slightly higher than that for isobutane in the whole range investigated. This is attributed to the fact that the linear n-butane molecule can adsorb in the smaller micropores. The T6th model appropriately describes the equilibrium data of the butane isomers, while the isotherm data of SF6 can be fitted by the Langmuir model. The isosteric heats associated with adsorption for these three adsorptives show different loading dependences. The present study indicates that the activated carbon can be well characterized by the probe molecules having different molecular sizes.  相似文献   

19.
The magnetic-field-induced birefringence of the three gases ethane, ethene, and ethyne has been measured between ?80 and +120°C, at pressures up to 1 bar. The molar Cotton-Mouton constants depend linearly on the reciprocal absolute temperature which is in agreement with the well-known theory for non-interacting molecules. Magnetic hyperpolarizability anisotropy parameters, susceptibility anisotropies, and some secondary quantities of these molecules have been determined for the first time.  相似文献   

20.
应用密度泛函理论(DFT), 采用5T簇模型来模拟分子筛催化剂的酸性位, 在B3LYP/6-311+G(3df, 2p)的条件下通过理论计算研究了乙烯在酸性分子筛上的二聚反应. 对反应各驻点进行了全局优化, 经过零点能校正后, 计算得出乙烯二聚反应的活化能. 研究表明, 乙烯在分子筛上的二聚反应分三步进行: 单个乙烯分子化学吸附→第二个乙烯分子的物理吸附→两乙烯分子二聚反应. 乙烯化学吸附生成的烷氧化合物与物理吸附的乙烯分子发生二聚反应生成新的C—C键同时生成新的烷氧化合物. 计算得到的乙烯化学吸附和二聚反应的反应能垒分别为108和149 kJ·mol-1. 反应的逆过程也就是1-丁烯在酸性分子筛表面的1-丁基烷氧化合物发生β分裂反应, 计算所得相应的1-丁烯β分裂反应的能垒为217 kJ·mol-1, 远高于相应的乙烯二聚反应能垒. 此外还进一步研究了所用基组对计算结果的影响.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号