首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
许可  徐朗  朱俊杰 《无机化学学报》2009,25(10):1864-1867
通过简单的超声化学方法制备了SrF2纳米片自组装微球.合成的产物通过粉末X射线衍射仪、场发射扫描电子显微镜、透射电子显微镜进行了表征和分析.结果表明这些微球是由规则、有序的纳米片组成.而这些纳米片互相垂直连接组装成微球.研究还发现反应物的浓度.配位剂和pH值对产物的形貌和尺寸有着重要的作用.  相似文献   

2.
We investigated the atomic structures, Raman spectroscopic and electrical transport properties of individual graphene nanoribbons (GNRs, widths ~10-30 nm) derived from sonochemical unzipping of multiwalled carbon nanotubes (MWNTs). Aberration-corrected transmission electron microscopy (TEM) revealed a high percentage of two-layer (2 L) GNRs and some single-layer ribbons. The layer-layer stacking angles ranged from 0° to 30° including average chiral angles near 30° (armchair orientation) or 0° (zigzag orientation). A large fraction of GNRs with bent and smooth edges was observed, while the rest showed flat and less smooth edges (roughness ≤1 nm). Polarized Raman spectroscopy probed individual GNRs to reveal D/G ratios and ratios of D band intensities at parallel and perpendicular laser excitation polarization (D(∥)/D(⊥)). The observed spectroscopic trends were used to infer the average chiral angles and edge smoothness of GNRs. Electrical transport and Raman measurements were carried out for individual ribbons to correlate spectroscopic and electrical properties of GNRs.  相似文献   

3.
A solvent-free, versatile procedure has been developed for the effective synthesis of tert-butanesulfinylimines of a variety of aldehydes using chiral tert-butanesulfinamides under green, sonochemical conditions. This method utilizes silica supported p-toluenesulfonic acid (pTSA·SiO2) as an efficient, safer and inexpensive catalyst under aerobic conditions. The practicable simplicity, easy preparation of the catalyst from readily available substances, high substrate scope, excellent yields of products in short reaction times and environmentally benign (solvent-free sonochemical) conditions are the exceptional assets of this finding.  相似文献   

4.
采用超声化学法,以CaCl2与不同氟源(NaBF4、K2SiF6)在溶液中反应,制得了不同形貌的CaF2微米晶(立方体、花状、多面体)。用XRD、SEM及TEM对产物晶相及形貌进行了表征。XRD结果显示所有产物均为结晶良好的立方相CaF2。SEM及TEM结果表明由NaBF4制得的产物形貌为均匀的立方体微米晶,而由K2SiF6制得的产物为多面体。在添加配体Na2EDTA的情况下,由NaBF4得到的产物为纳米片组成的花状结构。本文详细讨论了氟源种类、反应物比例、配体等反应参数对产物CaF2形貌的影响,并提出了可能的反应机理。  相似文献   

5.
Highly luminescent zinc(II)-bis(8-hydroxyquinoline) (Znq(2)) complex nanorods have been synthesized via a sonochemical route from the microemulsion containing zinc acetate and 8-hydroxyquinoline. The scanning electron microscopy (SEM) and transmission electron microscopy (TEM) images showed that the products were rod-like morphology with a diameter of about 200-450 nm and a length of about 1-3 microm. A possible mechanism for the formation of Znq(2) nanorods is proposed that the ultrasound wave might urge the collision and fusion of initial Znq(2) nuclei to form nanorods. The photoluminescence (PL) and resonance light scattering (RLS) of the products were also investigated. The Znq(2) nanorods were found to be sensitive to several proteins, such as human serum albumin (HSA), bovine serum albumin (BSA), bovine hemoglobin (Hb), and egg albumin (EA), displaying an increase in intensities of both PL and RLS. The protein-concentration dependence of the PL and RLS intensities can be well described as a Langmuir-type binding isotherm. This is the first report on the enhancement of PL and RLS intensities of Znq(2) nanorods by proteins. On the basis of enhanced PL and RLS intensities, the protein could be detected at the nanogram per milliliter level. The experimental results clearly showed that the Znq(2) nanorods were good protein probes for easy and highly sensitive detection.  相似文献   

6.
A simple sonochemical route has been successfully developed to synthesize SnO_2 hollow microspheres.Theobtained sample is characterized by XRD,TEM,XPS and UV-visible spectrophotometer.The TEM image of thesample at high magnification shows that the shell of the hollow sphere is composed of 3-5 nm SnO_2 nanoparticles.A possible formation mechanism of the hollow spheres is briefly discussed.  相似文献   

7.
Self-assembled nanorod of vanadium oxide bundles were synthesized by treating bulk V2O5 with high intensity sonochemical technique. The synthesized materials were characterized by X-ray diffraction (XRD), scanning electron microscope (SEM), transmission electron microscope (TEM) and temperature-programmed reduction (TPR) in H2. Catalytic behaviour of the materials over anaerobic n-butane oxidation was studied through temperature-programmed reaction (TPRn). Catalytic evaluation of the sonochemical treated V2O5 products was also studied on microreactor. XRD patterns of all the vanadium samples were perfectly indexed to V2O5. The morphologies of the nanorod vanadium oxides as shown in SEM and TEM depended on the duration of the ultrasound irradiation. Prolonging the ultrasound irradiation duration resulted in materials with uniform, well defined shapes and surface structures and smaller size of nanorod vanadium oxide bundles. H2-TPR profiles showed that larger amount of oxygen species were removed from the nanorod V2O5 compared to the bulk. Furthermore, the nanorod vanadium oxide bundles, which were produced after 90, 120 and 180 min of sonochemical treatment, showed an additional reduction peak at lower temperature (850 K), suggesting the presence of some highly active oxygen species. TPRn in n-butane/He over these materials showed that the nanorod V2O5 with highly active oxygen species showed markedly higher activity than the bulk material, which was further proven by catalytic oxidation of n-butane.  相似文献   

8.
The nanoflower lead(II) coordination compound {[Pb(phen)(μ‐CH3COO)][PF6]}n ( 1 ) (phen = 1,10‐phenanthroline) was synthesized by a sonochemical method. The nanostructure was characterized by using scanning electron microscopy (SEM), X‐ray powder diffraction, elemental analysis, and thermal analysis. The single‐crystal X‐ray structure shows that the overall structure of 1 is a 1D coordination polymer. Complex 1 has a bridging acetate pathway. Three halogen bonds observed in the structure and the strong halogen bonding of F–Pb causes chemical activity of the lead electron pair. This is further extended into a 3D supramolecular structure by weak π–π intermolecular interactions. The coordination number of the lead(II) ions is six, resulting in PbN2O4. PbO nanoparticles were obtained by the thermolysis of 1 at 180 °C with oleic acid as a surfactant. The morphology and size of the prepared PbO nanoparticles were further observed using scanning electron (SEM) and transmission electron microscopy (TEM), and were analyzed by X‐ray photoelectron spectroscopy (XPS).  相似文献   

9.
We report herein on an efficient sonochemical method for the synthesis of rare earth orthovanadate nanorods/nanoparticles/nanospindles, (general formula RVO4; R = La, Ce, Nd, Sm, Eu and Gd). TGA, XRD, FTIR, Raman, UV–Vis, and TEM studies are employed for their characterization and for understanding their morphologies. In order to vary the textural properties of the rare earth vanadates, two surfactants, polyethylene glycol (PEG) and amphiphilic triblock copolymer Pluronic P123, are chosen in the preparation. While the sonochemical synthesis in the presence of PEG results in the formation of nearly spherical nanoparticles of LaVO4, CeVO4, SmVO4 and EuVO4, the same technique yields nanorods and nanospindles of NdVO4 and GdVO4, respectively. When P123 is used as the surfactant, the morphologies of RVO4 are strikingly different, and in most cases nanorods and nanospindles are formed. The photocatalytic activities of the rare earth orthovanadate have been evaluated by studying the degradation of methylene blue, and CeVO4 seems to be the best catalyst in the heterogeneous photolysis. The electrocatalytic activity of the vanadates has been examined by studying the hydrogen evolution reaction using a linear sweep voltammogram technique in 1 M of a H2SO4 solution. GdVO4 seems to be the best electrocatalyst. Electronic supplementary material  The online version of this article (doi:) contains supplementary material, which is available to authorized users.  相似文献   

10.
The rates of DPPH (diphenylpicrylhydrazyl) trapping and the sonolytical products obtained during the sonolysis of thioethers at normal and low temperature are reported. CS2, lower sulfides, thiophene, and sulfurized species are the common products during the ultrasonic irradiations. Hydrocarbons are also obtained during the sonolysis of diallyl sulfide, diethyl disulfide, and dipropyl disulfide. Furthermore, aldehydes are obtained as oxidized species; SO2 is found at 208 K. The principal sonochemical process appears to be the cleavage of C-S or S-S bond with secondary combinations and rearrangements. DPPH has been used to probe the sonolytical potential of thioethers. The results show a good correlation between the rates of DPPH trapping and the vapor pressures of thioethers. In conclusion, a lower vapor pressure results in a higher sonolytical rate. The sonochemical behaviors of thioethers have strong qualitative similarities to the pyrolysis.  相似文献   

11.
Silica nanostructures were synthesized on the basis of modified Stöber procedure via a sonochemical method and the reaction between tetraethyl orthosilicate (TEOS), ethylenediamine (en) and methanol in water, in the attendance of Schiff-base ligand (H2Salen) as capping agent. The effects of synthesis parameters such as: sonochemical irradiation time, sonochemical power and molar aspect ratio of Schiff-base ligand to TEOS were considered to achieve optimum situation. It was established that particle size, morphology and phase of the products could be affected by these parameters. The as synthesized silica nanostructures were characterized by X-ray powder diffraction, scanning electron microscopy, Fourier transform infrared spectroscopy, ultraviolet–visible spectroscopy, and X-ray energy dispersive spectroscopy.  相似文献   

12.
Sonochemical preparation of hollow nanospheres and hollow nanocrystals   总被引:5,自引:0,他引:5  
Ceramic hollow spheres of MoS2 and MoO3 were obtained by sonochemical synthesis of MoS2 and MoO3 templated on silica nanoparticles (diameters 50-500 nm) followed by acid etching to remove the silica core. The resulting hollow materials have been characterized by elemental analysis, XPS, SEM, TEM, optical absorption, and hydrodesulfurization (HDS) studies. The TEM studies on the hollow ceramic materials indicate the formation of dispersed free spheres with a hollow core. The hollow materials obtained from thermally treated MoS2/SiO2 (450-700 degrees C) show the formation of layered MoS2 (lattice fringes approximately 6.2 A) with a wall thickness of 6-8 layers. The MoS2 hollow spheres are extremely active catalysts for the HDS of thiophene. Hollow spheres of MoO3 are prepared in a similar fashion. Surprisingly, upon heating, hollow crystals of MoO3 with sharp-edged truncated cubes containing inner voids are formed from the initial spheres.  相似文献   

13.
In this paper, CuO, CuO/Cu2O, Cu2O, Cu2O/Cu and Cu microcrystals were synthesized via a hydrothermal method by mixing Cu(NO3)2·3H2O and NaOH together in the presence of an ionic liquid 1-butyl-3-methylimidazolium tetrafluoroborate([BMIM]BF4) or 1-butyl-3-methylimidazolium chloride([BMIM]Cl). The structures and the morphologies of the obtained products were characterized by means of X-ray diffractometer(XRD), field-emission scanning electron microscopy/energy-dispersive spectroscopy(FESEM/EDS), transmission electron microscopy/selected area electron diffraction(TEM/SAED) and Raman spectroscopy. The result of XRD indicates that Cu2O and Cu microcrystals are cubic phase and the Raman spectra confirm the presence of carbon. The results of FESEM and TEM images show Cu2O microcrystals as rule cubes of 2 μm in length and Cu particles of 5 μm in diameter. According to the difference between crystal structures, bi-component and single component products were synthesized by adjusting the reaction conditions. A possible formation mechanism of Cu2O and Cu was proposed in[BMIM]BF4.  相似文献   

14.
Based on sonochemical technique, large-scale PbS nanobelts are successfully synthesized in the mixed solution of PbCl2 and Na2S2O3. These nanobelts are characterized using X-ray diffraction, scanning electron microscopy, transmission electron microscopy (TEM), selected area electronic diffraction, energy dispersive X-ray spectroscopy, and high-resolution TEM. The as-synthesized PbS nanobelts have width of about 80 nm, length up to several millimeters, and width-to-thickness ratio of about 5. In addition, the growth mechanism of PbS nanobelts is suggested.  相似文献   

15.
Tang B  Zhuo L  Ge J  Niu J  Shi Z 《Inorganic chemistry》2005,44(8):2568-2569
Ultralong and single-crystalline Cd(OH)(2) nanowires were fabricated by a hydrothermal method using alkali salts as mineralizers. The morphology and size of the final products strongly depend on the effects of the alkali salts (e.g., KCl, KNO(3), and K(2)SO(4) or NaCl, NaNO(3), and Na(2)SO(4)). When the salt is absent, only nanoparticles are observed in TEM images of the products. The 1D nanostructure growth method presented herein offers an excellent tool for the design of other advanced materials with anisotropic properties. In addition, the Cd(OH)(2) nanowires might act as a template or precursor that is potentially converted into 1D cadmium oxide through dehydration or into 1D nanostructures of other functional materials (e.g., CdS, CdSe).  相似文献   

16.
A new and efficient method to produce a large quantity of high‐quality and non‐oxidized graphene flakes from powdered natural graphite by using a high‐intensity cavitation field in a pressurized ultrasonic reactor is demonstrated. TEM and selected‐area electron diffraction (SAED) confirmed the ordered graphite crystal structure of graphene. Atomic force microscopy (AFM) was used to examine the thickness of the graphene sheets. The delamination (exfoliation) of natural graphite in the liquid phase depends on the physical effects of ultrasound, which break down the 3D graphite structure into a 2D graphene structure. The prepared graphene is of high purity and without defects because no strongly oxidizing chemicals are used and no toxic products result. TEM shows that graphene nanosheets were produced with sizes in the range of tens to hundreds of square nanometers; these nanosheets were smooth and without any ripples and corrugations. High‐resolution TEM (HRTEM) and SAED analysis confirmed that the products were graphene nanosheets.  相似文献   

17.
So far,m any im portant sem iconductor m aterialssuch as ZnO,SnO2,Cu2O,In2O3have been synthesizedby using a variety of techniques including sol-gelm ethod[1],direct oxidation m ethod[2],m icrowave irradia-tion[3,4],sonochem ical m ethod[5],solution disper…  相似文献   

18.
Ma D  Zhang M  Xi G  Zhang J  Qian Y 《Inorganic chemistry》2006,45(12):4845-4849
A novel complex-assisted hydrothermal route is presented to fabricate ultralong Ag/C nanocables with length ranging from 100 to 180 microm on a large scale, based on the reaction of sulfamic acid silver and salicylic acid. By chemical etching of these Ag/C nanocables, high-quality carbonaceous nanotubes can be obtained at room temperature. Using the as-prepared Ag/C nanocables as templates, a new strategy for introducing guest materials into hollow nanotubes is addressed. We take Ag(2)Se as an example and validate the feasibility of this strategy. All of the products are characterized in detail by multiform techniques: X-ray diffraction, Fourier transform IR, energy-dispersive X-ray analysis, field emission scanning electron microscopy, transmission electron microscopy (TEM), and high-resolution TEM. The formation mechanisms of these products are tentatively proposed.  相似文献   

19.
以不同种类的金属丝为电极,采用交流电沉积的方法在液相水溶液中制备了多种金属氧化物纳米材料,并对其形貌进行了控制.由XRD和TEM分析结果表明,在相同的NaCl电解质水溶液中,不同的金属电极对应的不同金属氧化物纳米产物具有明显不同的形貌.  相似文献   

20.
郭琦  耿珺  姜立萍  朱俊杰 《无机化学学报》2010,26(11):2121-2125
<正>0引言BaF2的用途非常广泛,可用于光学玻璃、陶瓷色料、玻璃光导纤维、激光发生器、助熔剂及防腐剂等。BaF2是最快的闪烁体,在核物理和核技术中用来检测γ射线和带电粒子[1]。将掺杂稀土金属的纳米BaF2粒子嵌入有机或玻璃基体以发挥其发光性能的研究越来越引起重视[2]。碱土氟化物和许多半导体的晶格匹配性良好,可以用不同碱土氟化物层来连接晶格常数不同的半导体[3]。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号