首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 218 毫秒
1.
The proton adsorption to a mixture of purified Aldrich humic acid (PAHA) and hematite is investigated. Basic insight into the charge adjustment process is obtained by using a self-consistent-field lattice theory for polyelectrolyte adsorption. The calculations indicate that upon adsorption the component with the highest initial charge density tends to induce charges on the other component. The number of induced charges can show a maximum when the surface charge and the charge of the segments in direct contact with the surface roughly balance each other. Experimentally, the humic acid-hematite system is investigated by proton titrations. The alterations in charge density caused by adsorption of PAHA to hematite are investigated by comparing the proton adsorption on the individual samples with that on their mixtures. Upon adsorption a part of the functional groups of humic acid forms complexes with some of the surface sites of hematite. This interaction reduces the proton binding to the humic acid at relatively low pH and it promotes the proton adsorption on the oxide surface at relatively high pH. Copyright 1999 Academic Press.  相似文献   

2.
The pH-dependent adsorption of humic acid (HA) on magnetite and its effect on the surface charging and the aggregation of oxide particles were investigated. HA was extracted from brown coal. Synthetic magnetite was prepared by alkaline hydrolysis of iron(II) and iron(III) salts. The pH-dependent particle charge and aggregation, and coagulation kinetics at pH approximately 4 were measured by laser Doppler electrophoresis and dynamic light scattering. The charge of pure magnetite reverses from positive to negative at pH approximately 8, which may consider as isoelectric point (IEP). Near this pH, large aggregates form, while stable sols exist further from it. In the presence of increasing HA loading, the IEP shifts to lower pH, then at higher loading, magnetite becomes negatively charged even at low pHs, which indicate the neutralization and gradual recharging positive charges on surface. In acidic region, the trace HA amounts are adsorbed on magnetite surface as oppositely charged patches, systems become highly unstable due to heterocoagulation. Above the adsorption saturation, however, the nanoparticles are stabilized in a way of combined steric and electrostatic effects. The HA coated magnetite particles form stable colloidal dispersion, particle aggregation does not occur in a wide range of pH and salt tolerance is enhanced.  相似文献   

3.
In this paper, the LCD (ligand charge distribution) model is applied to describe the adsorption of (Tongbersven) humic acid (HA) to goethite. The model considers both electrostatic interactions and chemical binding between HA and goethite. The large size of HA particles limits their close access to the surface. Part of the adsorbed HA particles is located in the compact part at the goethite surface (Stern layers) and the rest in the less structured diffuse double layer (DDL). The model can describe the effects of pH, ionic strength, and loading on the adsorption. Compared to fulvic acid (FA), adsorption of HA is stronger and more pH- and ionic-strength-dependent. The larger number of reactive groups on each HA particle than on a FA particle results in the stronger HA adsorption observed. The stronger pH dependency in HA adsorption is related to the larger number of protons that are coadsorbed with HA due to the higher charge carried by a HA particle than by a FA particle. The positive ionic-strength dependency of HA adsorption can be explained by the conformational change of HA particles with ionic strength. At a higher ionic strength, the decrease of the particle size favors closer contact between the particles and the surface, leading to stronger competition with electrolyte ions for surface charge neutralization and therefore leading to more HA adsorption.  相似文献   

4.
The ionic strength dependence of humic acid (HA) adsorption on magnetite (Fe3O4) was investigated at pH 5, 8 and 9, where variable charged magnetite is positive, neutral and negative, respectively. The adsorption studies revealed that HA has high affinity to magnetite surface especially at lower pH, where interacting partners have opposite charges. However, in spite of electrostatic repulsion at pH 9 notable amounts of humate are adsorbed. Increasing ionic strength enhances HA adsorption at each pH due to charge screening. The dominant interaction is probably a ligand-exchange reaction, nevertheless the Coulombic contribution to the organic matter accumulation on oxide surface is also significant under acidic condition. The results from size exclusion chromatography demonstrate that the smaller size HA fractions enriched with functional groups are adsorbed preferentially on the surface of magnetite at pH 8 in dilute NaCl solution.  相似文献   

5.
The adsorption of humic acid (HA) on kaolin particles was studied at various conditions of initial solution pH, ionic strength and solid-to-liquid ratio. The resulting affinity of interactions between humic acid and kaolin was attributed to the surface coordination of HA in ambient suspensions of mineral particles and the strong electrostatic force at low pH. Addition of inorganic salt can also influence the adsorption behavior by affecting the HA molecular structure, the clay particle zeta potential and so on. Equilibrium data were well fitted by the Freundlich model and implied the occurrence of multilayer adsorption in the process. In addition, the enthalpy dependent of system temperature was 79.17 kJ/mol, which proved that the mechanism of HA adsorption onto kaolin was comprehensive, including electrostatic attraction, ligand complexation and hydrogen bonding.  相似文献   

6.
Adsorption of cations (Na(+), Ca(2+), Ba(2+)) onto negatively charged (pH 10.4) hematite (alpha-Fe(2)O(3)) particles has been studied. The oxide material was carefully prepared in order to obtain monodisperse suspensions of well-crystallized, quasi-spherical particles (50 nm in diameter). The isoelectric point (IEP) is located at pH 8.5. Adsorption of barium ions onto oxide particles was carried out and the electrophoretic mobility was measured throughout the adsorption experiment. Comparison with calcium adsorption at full coverage reveals a higher uptake of Ba(2+). In both cases it shows also that chloride ions coadsorb with M(2) ions. Simultaneous uptake of the positive and negative ions explains why the electrophoretic mobility does not reverse to cationic migration. A theoretical study of the surface speciation has been carried out, using the MuSiC model. It reveals the presence of negative as well as positive sites on both sides of the point of zero charge (PZC) of the hematite particles, which may explain the coadsorption of Ba(2+) and Cl(-) at pH 10.4. The effective charge of the oxide particles, calculated from the electrophoretic mobility, is in very good agreement with the results found with the MuSiC modelization and the chloride/barium adsorption ratio. It also verifies the theory of ionic condensation. Calorimetric measurements gave a negative heat for the overall reaction occurring when Ba(2+)/Cl(-) ions adsorb onto hematite. Despite the fact that anions (Cl(-) and OH(-)) adsorption onto mineral oxides is an exothermic phenomenon, it is likely that barium and calcium adsorption is endothermic, denoting the formation of an inner-sphere complex as reported in the literature.  相似文献   

7.
纳米TiO_2对水中腐殖酸的吸附及光催化降解   总被引:1,自引:0,他引:1  
研究了水体中腐殖酸 ( HA)在纳米 Ti O2 颗粒上的吸附行为 ,并探讨了其吸附机理 ,还研究了 HA的Ti O2 光催化降解效果 .结果表明 ,Ti O2 对 HA的吸附作用明显依赖于水溶液的 p H,也取决于 Ti O2 的零电荷点 ;HA的光催化降解效果与其在催化剂表面的吸附行为密切相关 ,提高吸附速率 ,HA的去除率也随之提高 ;增加催化剂用量也能改善降解程度  相似文献   

8.
There is good correlation of contact angle measurements and contact angles calculated from surfactant adsorption density data for an electrically neutral surface, as reported in a previous paper for the system hematite-aqueous solution-ketone, with surfactant hexadecyl sulfonic acid. The same method is not sufficient when the hematite surface is electrically charged. Data was collected to develop the appropriate form of an electrostatic term for the analysis. Acid-base titration was used to evaluate surface electrical properties versus pH for the hematite used in the study. Surfactant adsorption isotherms were measured at pH of 4.5, 5.5, 6, and 7 to use in developing an equation for effect of surface potential on contact angle. After adding a term for the contribution of the electric field, the contact angles calculated from adsorption data follow the measured contact angles well.  相似文献   

9.
Summary Although the binding of pesticides to organic carbon in soil, especially to humic acid (HA), is well recognized, the mechanisms have not been completely explained. This publication deals with adsorption of atrazine and terbuthylazine by humic acid under different experimental conditions, including adsorption times longer than those used hitherto. Direct HPLC analysis of HA suspensions is assessed as an alternative to more complicated techniques for estimation of free triazines, and compared with combined solid-phase extraction and HPLC. Experimental conditions such as time of exposure, addition of neutral salt, pH of the suspension, and HA concentration have a significant impact on the extent of triazine adsorption. At alkaline pH, triazines become partitioned in the HA fraction because of its hydrophobicity, whereas at acidic pH hydrogen-bonding probably occurs between triazine molecules and humic acid polymers. Presented at Balaton Symposium on High-Performance Separation Methods, Siófok, Hungary, September 1–3, 1999  相似文献   

10.
Using microelectrophoresis and electric light scattering techniques, we investigated the adsorption characteristics, surface coverage and surface electric parameters of superstructures from two isoforms of plastocyanin, PCa and PCb, in an oxidized state adsorbed on beta-ferric hydrous oxide particles. The surface electric charge and electric dipole moments of the composite particles and the thickness of the protein adsorption layer are determined in a wide pH range, at different ionic strengths and concentration ratios of PC to beta-FeOOH. The adsorption of the two proteins was found to shift the particles' isoelectric point and to alter the total electric charge and the electric dipole moments of the oxide particles to different extent. A "reversal" in the direction of the permanent dipole moment is observed at lower pH for PCb- than for PCa-coated oxide particles. Strict correlation is found between the changes in the electrokinetic charge of the composite particles and the variation in their "permanent" dipole moments. Data suggest that the adsorption of the proteins is driven by electrostatic and/or hydrophobic interactions with the oxide surfaces dependent on pH. The adsorption behaviour is consistent with the involvement of the "eastern" and "northern" patches of the plastocyanin molecules in their adsorption on the oxide surfaces that are differently charged depending on pH.  相似文献   

11.
This article describes the adsorption of sodium dodecyl benzene sulfonate, an anionic surfactant, on a hematite surface and that when the surface is preadsorbed with polyacrylamide. The adsorption of surfactant on a hematite surface has been studied through equilibration and during kinetics measurements at three pH levels, viz. 4.0, 7.0, 8.9. The surfactant adsorbs strongly on the hematite surface. The adsorption density at equilibrium as well as the rate of adsorption are dependent on the suspension pH. The maximum adsorption density has been observed at pH 4, which reflects strong adsorption of negatively charged sulfonate ions on the oppositely charged Fe2O3 surface (point of zero charge, 6.4). The adsorption density reaches its equilibrium value sooner in the case of an alkaline suspension and later in the case of acidic pH. The polymer surfactant interaction has been noticed in the present study and is also a function of pH. The hematite mineral when preadsorbed with the polymer draws fewer of the surfactant molecules at lower surface coverage (during the initial period of the kinetics measurement) irrespective of the pH. When the adsorption of the surfactant reaches a value which is near the equilibrium one, the pH effect is evident. In the case of acidic pH, the surfactant adsorbs more on the hematite surface when preadsorbed with the polymer compared to the bare surface. In the case of neutral or alkaline pH, however, the density of surfactant adsorption remains lower throughout the kinetics measurement when the surface is preadsorbed with the flocculant compared to the bare surface. The particles also remain flocculated till the end of the experiment, whereas at pH 4 the particles are deflocculated. In addition to pH, the electrostatic nature of the adsorbent and the presence of anionic surfactant have an influence on the flocculation–deflocculation phenomena. The polymer–surfactant interaction has been schematically represented. The surfactant is bound with polymeric chains as a combination of its monomeric form as well as in the form of association in the case of acidic media and in competition with polymer in the case of alkaline media. Received: 18 April 2000/Accepted: 2 August 2000  相似文献   

12.
The effects of orthophosphate on the adsorption of natural organic matter (NOM) on aluminum hydroxide were investigated using three organic compounds as surrogates, including humic acid (HA), phthalic acid, and 2,3-dihydroxybenzoic acid (2,3-DHBA). The adsorption of phthalic acid and 2,3-DHBA was very limited compared to that of HA, whereas their adsorption was reduced much more significantly than that of HA by phosphate. The efficiency of phosphate in reducing HA adsorption increased with increasing phosphate concentration. Phosphate adsorption was slightly reduced by phthalic acid and 2,3-DHBA but moderately suppressed by HA. The adjacent carboxylic groups mainly contributed to the adsorption of humic acid at low pH, while the adjacent phenol groups were responsible for the adsorption of humic acid at high pH. HPLC-SEC and SUVA analysis revealed that HA molecules with high molecular weight were adsorbed preferentially but were easily displaced by the specifically adsorbed phosphate. TM-AFM images revealed that the aggregation of HA molecules and the protonation of carboxylic groups at low pH facilitated the adsorption under acidic conditions. The presence of phosphate increases the coagulant dosage for NOM removal as some sites on the coagulant precipitates become utilized by phosphate.  相似文献   

13.
The colloidal stability of suspensions of hematite/yttria core/shell particles is investigated in this work and compared with that of the pure hematite cores. The different electrical surface characteristics of yttrium and iron oxides, as well as the diameters of both types of spherical particles, dominate the overall process of particle aggregation. The aggregation kinetics of the suspensions was followed by measuring their optical absorbance as a function of time. By previously calculating the extinction cross section of particle doublets, it was demonstrated that for both core and core/shell particles the turbidity of the suspensions should increase on aggregation. Such an increase was in fact found in the systems in spite of the ever-present tendency of the particles to settle under gravity. The authors used the initial slope of the turbidity increment time plots as a measure of the ease of aggregation between particles. Thus, they found that the essential role played by pH on the charge generation on the two oxides and the shift of one pH unit between the isoelectric points of hematite and yttria manifest in two features: (i) the stability decreases on approaching the isoelectric point from either the acid or basic side and (ii) the maximum instability is found for hematite at pH 7 and for hematite/yttria at pH 8, that is, close to the isoelectric points of alpha-Fe(2)O(3) and Y(2)O(3), respectively. The role of added electrolyte is simply to yield the suspensions of either type more unstable. Using the surface free energy of the particles, the authors could estimate their Hamaker constants in water. From these and their zeta potentials, the DLVO theory of stability was used to quantitatively explain their results.  相似文献   

14.
The effect of polyelectrolyte charge density on the electrical properties and stability of suspensions of oppositely charged oxide particles is followed by means of electro-optics and electrophoresis. Variations in the electro-optical effect and the electrophoretic mobility are examined at conditions where fully ionized pectins of different charge density adsorb onto particles with ionizable surfaces. The charge neutralization point coincides with the maximum of particle aggregation in all suspensions. We find that the concentration of polyelectrolyte, needed to neutralize the particle charge, decreases with increasing charge density of the pectin. The most highly charged pectin presents an exception to this order, which is explained with a reduction of the effective charge density of this pectin due to condensation of counterions. The presence of condensed counterions, remaining bound to the pectin during its adsorption on the particle surface, is proved by investigation of the frequency behavior of the electro-optical effect at charge reversal of the particle surface.  相似文献   

15.
Using microelectrophoresis and electric light scattering techniques, we investigated the adsorption characteristics, surface coverage and surface electric parameters of superstructures from two isoforms of plastocyanin, PCa and PCb, in an oxidized state adsorbed on β-ferric hydrous oxide particles. The surface electric charge and electric dipole moments of the composite particles and the thickness of the protein adsorption layer are determined in a wide pH range, at different ionic strengths and concentration ratios of PC to β-FeOOH. The adsorption of the two proteins was found to shift the particles’ isoelectric point and to alter the total electric charge and the electric dipole moments of the oxide particles to different extent. A “reversal” in the direction of the permanent dipole moment is observed at lower pH for PCb- than for PCa-coated oxide particles. Strict correlation is found between the changes in the electrokinetic charge of the composite particles and the variation in their “permanent” dipole moments. Data suggest that the adsorption of the proteins is driven by electrostatic and/or hydrophobic interactions with the oxide surfaces dependent on pH. The adsorption behaviour is consistent with the involvement of the “eastern” and “northern” patches of the plastocyanin molecules in their adsorption on the oxide surfaces that are differently charged depending on pH.  相似文献   

16.
The effect of pH and neutral electrolyte on the interaction between humic acid/humate and γ-AlOOH (boehmite) was investigated. The quantitative characterization of surface charging for both partners was performed by means of potentiometric acid–base titration. The intrinsic equilibrium constants for surface charge formation were logK a,1 int=6.7±0.2 and logK a,2 int = 10.6±0.2 and the point of zero charge was 8.7±0.1 for aluminium oxide. The pH-dependent solubility and the speciation of dissolved aluminium was calculated (MINTEQA2). The fitted (FITEQL) pK values for dissociation of acidic groups of humic acid were pK 1 = 3.7±0.1 and pK 2 = 6.6±0.1 and the total acidity was 4.56 mmol g−1. The pH range for the adsorption study was limited to between pH 5 and 10, where the amount of the aluminium species in the aqueous phase is negligible (less than 10−5 mol dm−3) and the complicating side equilibria can be neglected. Adsorption isotherms were determined at pH ∼ 5.5, ∼8.5 and ∼9.5, where the surface of adsorbent is positive, neutral and negative, respectively, and at 0.001, 0.1, 0.25 and 0.50 mol dm−3 NaNO3. The isotherms are of the Langmuir type, except that measured at pH ∼ 5.5 in the presence of 0.25 and 0.5 mol dm−3 salt. The interaction between humic acid/humate and aluminium oxide is mainly a ligand-exchange reaction with humic macroions with changing conformation under the influence of the charged interface. With increasing ionic strength the surface complexation takes place with more and more compressed humic macroions. The contribution of Coulombic interaction of oppositely charged partners is significant at acidic pH. We suppose heterocoagulation of humic acid and aluminium oxide particles at pH ∼ 5.5 and higher salt content to explain the unusual increase in the apparent amount of humic acid adsorbed. Received: 20 July 1999 /Accepted in revised form: 20 October 1999  相似文献   

17.
ζ-potential measurements on LUVs allow to evidence the influence of pH, ionic salt concentration, and polyelectrolyte charge on the interaction between polyelectrolyte (chitosan and hyaluronan) and zwitterionic lipid membrane. First, chitosan adsorption is studied: adsorption is independent on the chitosan molecular weight and corresponds to a maximum degree of decoration of 40% in surface coverage. From the dependence with pH and independence with MW, it is concluded that electrostatic interactions are responsible of chitosan adsorption which occurs flat on the external surface of the liposomes. The vesicles become positively charged in the presence of around two repeat units of chitosan added per lipid accessible polar head in acid medium down to pH = 7.2. Direct optical microscopy observations of GUVs shows a stabilization of the composite liposomes under different external stresses (pH and salt shocks) which confirms the strong electrostatic interaction between the chitosan and the lipid membrane. It is also demonstrated that the liposomes are stabilized by chitosan adsorption in a very wide range of pH (2.0 < pH < 12.0). Then, hyaluronan (HA), a negatively charged polyelectrolyte, is added to vesicles; the vesicles turn rapidly negatively charged in presence of adsorbed HA Finally, we demonstrated that hyaluronan adsorbs on positively charged chitosan-decorated liposomes at pH < 7.0 leading to charge inversion in the liposome decorated by the chitosan-hyaluronan bilayer. Our results demonstrate the adsorption of positive and/or negative polyelectrolyte at the surface of lipidic vesicles as well as their role on vesicle stabilization and charge control.  相似文献   

18.
Effects of heavy metals and oxalate on the zeta potential of magnetite   总被引:3,自引:0,他引:3  
Zeta potential is a function of surface coverage by charged species at a given pH, and it is theoretically determined by the activity of the species in solution. The zeta potentials of particles occurring in soils, such as clay and iron oxide minerals, directly affect the efficiency of the electrokinetic soil remediation. In this study, zeta potential of natural magnetite was studied by conducting electrophoretic mobility measurements in single and binary solution systems. It was shown that adsorption of charged species of Co(2+), Ni(2+), Cu(2+), Zn(2+), Pb(2+), and Cd(2+) and precipitation of their hydroxides at the mineral surface are dominant processes in the charging of the surface in high alkaline suspensions. Taking Pb(2+) as an example, three different mechanisms were proposed for its effect on the surface charge: if pH<5, competitive adsorption with H(3)O(+); if 56, precipitation of heavy metal hydroxides prevails. Oxalate anion changed the associated surface charge by neutralizing surface positive charges by complexing with iron at the surface, and ultimately reversed the surface to a negative zeta potential. Therefore the adsorption ability of heavy metal ions ultimately changed in the presence of oxalate ion. The changes in the zeta potentials of the magnetite suspensions with solution pH before and after adsorption were utilized to estimate the adsorption ability of heavy metal ions. The mechanisms for heavy metals and oxalate adsorption on magnetite were discussed in the view of the experimental results and published data.  相似文献   

19.
For a better understanding of adsorption of the rare earth elements (REEs) onto minerals and its controlling factors, adsorption experiments were performed at pH range of from 3 to 10 with kaolin (1500 mg/L) in a matrix of various concentration of NaNO3 and about 20 μg/L of the total REEs as well as various amounts of humic acid (HA). The adsorption of HA onto the kaolin occurred over a wide pH range and decreases with increasing pH and with increasing HA concentration. The results show that humic acid has ability to either increase or decrease the adsorption of the REEs onto kaolin, depending on pH, which may be related to their speciation distribution, interaction of HA with the mineral surface. Furthermore, the light REEs are more adsorbed onto kaolin in presence of higher concentration of HA, presumably because the increase in HA concentration in the solution enhance stronger complexing of HA with heavy REEs as compare to light REEs. The ionic strength has strong effect on the adsorption of HA and REEs onto the kaolin but little on the REEs fractionation. The results presented here indicate that mineral/water adsorption may generate the enrichment of the dissolved heavy REEs in the presence of a significant amount of humic acid, which is consistent with the fractionation of REEs in the most of natural waters.  相似文献   

20.
结合静态实验和X射线吸收精细结构谱学(EXAFS)技术研究了pH、时间、有机配体等环境因素对放射性核素Eu(III)在钛酸纳米管上的吸附行为和微观机制的影响.宏观实验结果表明:Eu(III)在钛酸纳米管上的吸附在pH<6.0条件下受离子强度影响,而在pH>6.0条件下不受离子强度影响;腐殖酸HA/FA在低pH条件下可以促进Eu(III)在钛酸纳米管上的吸附,而在高pH条件下抑制Eu(III)在钛酸纳米管上的吸附.EXAFS微观分析结果表明:在pH<6.0条件下,吸附属于外层吸附机理;在pH>6.0条件下,吸附属于内层吸附机理.pH<6.0时,中心原子Eu周围只有Eu-O一个配位层,其平均键长为2.40,配位数在9左右;随着pH逐渐升高,第一配位层的配位数下降,表明吸附Eu原子配位的对称性下降.当吸附时间延长或pH升高,吸附原子Eu周围出现了Eu-Eu和Eu-Ti第二配位层,其平均键长分别为3.60和4.40,配位数分别在2或1左右,表明形成了内层吸附产物或表面沉淀或表面多聚体.腐殖酸HA/FA的存在,可以改变Eu(III)在钛酸纳米管表面的吸附形态和微观原子结构,Eu(III)不仅可以与钛酸纳米管的表面羟基直接键合形成二元表面复合物(Eu-TNTs),还可以通过HA/FA的桥连作用形成三元表面复合物(HA/FA-Eu-TNTs).这些研究结果对于评估放射性核素Eu(III)与纳米材料在分子水平上的作用机理及分析Eu(III)在环境中的物理化学行为具有重要的意义.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号