首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Novel luminescence‐functionalized metal–organic frameworks (MOFs) with superior electrogenerated chemiluminescence (ECL) properties were synthesized based on zinc ions as the central ions and tris(4,4′‐dicarboxylicacid‐2,2′‐bipyridyl)ruthenium(II) dichloride ([Ru(dcbpy)3]2+) as the ligands. For potential applications, the synthesized MOFs were used to fabricate a “signal‐on” ECL immunosensor for the detection of N‐terminal pro‐B‐type natriuretic peptide (NT‐proBNP). As expected, enhanced ECL signals were obtained through a simple fabrication strategy because luminescence‐functionalized MOFs not only effectively increased the loading of [Ru(dcbpy)3]2+, but also served as a loading platform in the ECL immunosensor. Furthermore, the proposed ECL immunosensor had a wide linear range from 5 pg mL?1 to 25 ng mL?1 and a relatively low detection limit of 1.67 pg mL?1 (signal/noise=3). The results indicated that luminescence‐functionalized MOFs provided a novel amplification strategy in the construction of ECL immunosensors and might have great prospects for application in bioanalysis.  相似文献   

2.
An ultrasensitive electrochemiluminescence (ECL) immunosensor based on CdSe quantum dots (QDs) has been designed for the detection of clenbuterol. The immunosensor was fabricated by layer by layer and characterized with atomic force microscopic images (AFM) and electrochemical impedance spectra (EIS). In oxygen-saturated pH = 9.0 Tris-HCl buffer, a strong ECL emission of QDs could be observed during the cathodic process due to the H2O2 product from electrochemical reduction of dissolved oxygen. Upon the formation of immunocomplex, the second antibody labeled with horseradish peroxidase was simply immobilized on the electrode surface. The ECL emission decreased since steric hindrance of the immunocomplex slowed down the electron-transfer speed of dissolved oxygen, and also could be greatly amplified by an enzymatic cycle to consume the self-produced coreactant. Using clenbuterol as model analyte, the ECL intensity was determined by the concentration of competitive immunoassay of clenbuterol with a wide calibration in the range of 0.05 ng mL−1 to 1000 ng mL−1, and a low detection limit was 0.02 ng mL−1. The immunosensor shows good stability and fabrication reproducibility. It was applied to detecting practical samples with the satisfactory results. This immunosensing strategy opens a new avenue for detection of residue and application of QDs in ECL biosensing.  相似文献   

3.
A approach was successfully employed for constructing a solid‐state electrochemiluminescence (ECL) immunosensor by layer‐by‐layer self‐assembly of multiwall carbon nanotubes (MWCNTs)‐Nafion composite film, Ru(bpy)32+/nano‐Pt aggregates (Ru‐PtNPs) and Pt nanoparticles (PtNPs). The influence of Pt nanoparticles on the ECL intensity was quantitatively evaluated by calculating the electroactive surface area of different electrodes with or without PtNPs to immobilize Ru(bpy)32+. The principle of ECL detection for target α‐fetoprotein antigen (AFP) was based on the increment of resistance after immunoreaction, which led to a decrease in ECL intensity. The linear response range was 0.01–10 ng mL?1 with the detection limit of 3.3 pg mL?1. The immunosensor exhibited advantages of simple preparation and operation, high sensitivity and good selectivity.  相似文献   

4.
Electrochemiluminescent (ECL) immunosensor with multiple signal amplification was designed based on gold nanoparticles (AuNPs), polyamidoamine dendrimers (PAMAM) and silver-cysteine hybrid nanoribbon (SNR). Low toxic l-cysteine capped CdSe QDs was chosen as the ECL signal probe. To verify the proposed ultrasensitive ECL immunosensor for β-adrenergic agonists (β-AA), we detected Brombuterol (Brom) as a proof-of-principle analyte. Therein, AuNPs as the substrate can simplify the experiment process, accelerate the electron transfer rate, and carry more coating antigen (Ag-OVA) to enlarge ECL signal. On one hand, SNR on the surface of electrode can avoid the aggregation of AuNPs, and SNR-PAMAM-AuNPs also can be acted as a good accelerator for electron transfer. On the other hand, PAMAM (16 -NH2) functionalized SNR (SNR-PAMAM) with numerous amino groups could be employed to bond abundant actived QDs to further amplify ECL signal. The new immunosensor can offer a simple, reliable, rapid, and selective detection for Brom, which have a dynamic range of 0.005–700 ng mL−1 with a low detection limit at 1.5 pg mL−1. The proposed biosensor will extend the application of nanomaterials in ECL immunoassays and open a new road for the detection of Brom and other β-AA in the future.  相似文献   

5.
Phosphate anions are determined based on the electrochemiluminescence (ECL) of CdSe quantum dots (CdSe QDs) capped with 3‐mercaptopropionic acid. The ECL gets quenched with the introduction of Eu3+ ions, but it is restored on the further addition of phosphate anions. The sensing mechanism might be due to the strong and specific interaction between phosphate anions and the Eu3+ ions, leading to the releasing of CdSe QDs from aggregates. On the basis of the quenching/recovery ECL behaviors, the ECL sensor offer acceptable sensitivity, high selectivity, and a linear response from 0.1 to 120 µM with a detection limit of 0.03 µM (3δ) for phosphate anions.  相似文献   

6.
Magnetic electrochemiluminescent Fe3O4/CdSe–CdS nanoparticle/polyelectrolyte nanostructures have been synthesized and used to fabricate an electrochemiluminescence (ECL) immunosensor for the detection of carcinoembryonic antigen (CEA). CEA is a protein used as a biomarker for several cancers; particularly, to monitor response to treatment in colon and rectal cancer patients. The nanocomposites can be easily separated and firmly attached to an electrode owing to their excellent magnetic properties. This represents a promising advantage for bioassay applications. More importantly, the nanostructures exhibit intense and stable ECL emissions in neutral solution, which makes them ideal for ECL immunosensing. The 3‐aminopropyltriethoxysilane (APS) polyelectrolyte shell on the nanostructure surface not only enhances the intensity and stability of the ECL signal, but also acts as a crosslinker for immunosensor fabrication. A CEA antibody immobilized onto a nanocomposite/APS/electrode with gold nanoparticles comprises the ECL immunosensor. The principle of ECL detection for CEA is based on a change in steric hindrance after immunoreaction, which leads to a decrease in ECL intensity. A wide detection range (0.064 pg ml?1–10 ng ml?1) and low detection limit (0.032 pg ml?1) are achieved. The immunosensor is highly sensitive and selective, and exhibits excellent stability and good reproducibility. It thus has great potential for clinical protein detection. In particular, this approach uses a novel class of bifunctional nanocomposites that display both intense ECL and excellent magnetism, which renders them suitable for a large range of bioassay applications.  相似文献   

7.
A facile and ultrasensitive electrochemiluminescent (ECL) immunosensor for detection of prostate-specific antigen (PSA) was designed by using CdTe quantum dots coated silica nanoparticles (SiO2@QDs) as bionanolabels. To construct such an electrochemiluminescence immunosensor, gold nanoparticles-dotted graphene composites were immobilized on the working electrode, which can increase the surface area to capture a large amount of primary antibodies as well as improve the electronic transmission rate. The as-prepared SiO2@QDs used as bionanolabels, showed good ECL performance and good ability of immobilization for secondary antibodies. The approach provided a good linear response ranging from 0.005 to 10 ng?mL?1 with a low detection limit of 0.0032 ng?mL?1. Such immunosensor showed good precision, acceptable stability, and reproducibility. Satisfactory results were obtained for determination of PSA in human serum samples. Therefore, the proposed method provides a new promising platform of clinical immunoassay for other biomolecules.  相似文献   

8.
In this study, electrochemical immunosensors were developed for the detection of prostate specific antigen (PSA) using ferrocene (Fc) and polyamidoamine dendrimer (PAMAM) constructs. The biosensor fabrication was designed by modifying the screen‐printed gold electrode (Au) with ferrocene cored dendrimers (FcPAMAM) synthesized in three different generations. The self‐assembled monolayer principle was followed, to obtain sensitive, selective and disposable electrodes. Therefore, the Au electrodes were modified with cysteamine (Cys) to obtain a functional surface for FcPAMAM dendrimers to bind. Dendrimer generations were attached to this surface using a cross‐linker (glutaraldehyde) so that a suitable surface was obtained for binding of biological components. The Monoclonal PSA antibody (anti‐PSA) was immobilized on the Au electrode surface which coated with dendrimer, and (Au/Cys/FcPAMAM/anti‐PSA) biosensing electrode was obtained. The PSA detection performances of electrochemical impedance spectroscopy (EIS) and Amperometry based immunosensors exhibited very low detection limits; 0.001 ng mL?1 and 0.1 pg mL?1, respectively. In addition, EIS and Amperometry based biosensors using Au/Cys/FcPAMAM/anti‐PSA sensing electrode were represented excellent linear ranges of 0.01 ng mL?1 to 100 ng mL?1 and 0.001 ng mL?1 to 100 ng mL?1. In order to determine the applicability recovery and selectivity tests were performed using three different proteins in human serum.  相似文献   

9.
We report on the first label-free electrochemiluminescence (ECL) immunosensor for α-fetoprotein (AFP). It is based on the use of CdSe quantum dots that were electrodeposited directly on a gold electrode from an electrolyte (containing cadmium sulfate, EDTA and selenium dioxide) by cycling the potential between 0 and -1.2?V (vs. SCE) for 60?s. The electrodeposited dots were characterized by scanning electron microscopy and energy dispersive spectroscopy. Under optimal conditions, the specific immunoreaction between AFP and anti-AFP resulted in a decrease of the ECL signal because of the steric hindrance and the transfer inhibition by peroxodisulfate. The quenching effect of the immunoreaction on the intensity of the ECL was used to establish a calibration plot which is linear in the range from 0.05 to 200?ng?mL?1. The detection limit is 2?pg?mL?1. The assay is highly sensitive and satisfactorily reproducible. In our opinion it opens new avenues to apply ECL in label-free biological assays.
Figure
We report on the first label-free electrochemiluminescence (ECL) immunosensor for α-fetoprotein (AFP). It is based on the use of CdSe quantum dots that were electrodeposited directly on a gold electrode from an electrolyte. Under optimal conditions, the specific immunoreaction between AFP and anti-AFP resulted in a decrease of the ECL signal because of the steric hindrance and the transfer inhibition by peroxodisulfate  相似文献   

10.
European foulbrood (EFB) is a honeybee larvae disease caused by a bacterium Melissococcus plutonius. An amperometric immunosensor based on a sandwich assay was developed for rapid point‐of‐care detection of this pathogen. An in‐house made anti‐Melissococcus antibody was immobilized to a gold surface of a screen‐printed sensor via self‐assembled monolayer of cysteamine activated with glutaraldehyde. The direct impedimetric detection of captured microbial cells was tested, however, a better performance was obtained after the formation of sandwich with the peroxidase‐labeled antibody in the amperometric mode. The label‐free assay was limited by higher non‐specific binding. The limit of detection of the immunosensor was 6.6×104 CFU mL?1 (colony‐forming units) with wide linear range between 105 CFU mL?1 and 109 CFU mL?1. The whole analysis was completed within 2 h, which is shorter compared to common laboratory diagnostic tools, such as enzyme‐linked immunosorbent assay or polymerase chain reaction. Furthermore, atomic force microscopy was used for confirmation of the bacteria presence on the electrode surface. The developed immunosensor was successfully employed in the analysis of real samples of honeybees and larvae. The achieved results demonstrate the potential of the amperometric immunosensor for practical in‐field diagnosis of EFB, which can prevent infection spreading and connected losses of honeybee colonies.  相似文献   

11.
A novel and sensitive electrochemiluminescence (ECL) immunosensor based on CdS quantum dots (QDs)-carbon nanotubes (CNTs) and gold nanoparticles-chitosan (GNPs-CHIT) was presented. CdS QDs ECL was much enhanced by combing poly(diallyldimethylammonium chloride) functionalized CNTs. GNPs-CHIT nanohybrids was used to construct an effective antibody immobilization matrix with excellent stability and bioactivity. The principle of ECL detection for target human IgG is based on the increment of steric hindrance after immunoreaction, which resulted in the decrease in ECL intensity. The linear response range was between 0.006 and 150 ng mL?1, and the detection limit was 0.001 ng mL?1. This approach offers obvious advantages of being simpler, faster, and more stable compared with other immunosensors, which possesses great potential for protein detection in clinical laboratory.  相似文献   

12.
This work demonstrated the feasibility of detecting hydrocortisone in cosmetics using a novel CdSe/CdS quantum dots‐based competitive fluoroimmunoassay with magnetic core/shell Fe3O4/Au nanoparticles (MCFN) as solid carriers. Hydrocortisone antigen was labeled with the synthesized core/shell CdSe/CdS quantum dots (QDs) to form the antigen‐QDs conjugate. Meanwhile, hydrocortisone antibody was incubated with MCFN and the immobilized antibody was obtained. The immobilized antibody was then mixed sequentially with hydrocortisone and a slightly excess amount of the QDs‐labeled hydrocortisone antigen, allowing their competition for binding with the antibody immobilized on MCFN. The bound hydrocortisone and the antigen‐QDs conjugates on MCFN were removed subsequently after the mixture was applied to a magnetic force. The analyte concentration was obtained by measuring the fluorescence intensity of the unbound hydrocortisone antigen‐QDs conjugates. The proposed method was characterized by simplicity, rapidity, and high sensitivity with a wide linear working range of 0.5 to 15000 pg·mL?1 and a low detection limit of 0.5 pg·mL?1. The proposed method was successfully applied to the determination of hydrocortisone in cosmetics with satisfactory results.  相似文献   

13.
CdSe:Eu nanocrystals were successfully synthesized and characterized by transmission electron microscopy, X-ray powder diffraction, and X-ray photoelectric spectroscopy. The CdSe:Eu nanocrystals showed enhanced green electrochemiluminescence (ECL) intensity when compared to pure CdSe nanocrystals. Further, the nanocrystals were used to design an ECL immunosensor for the detection of carcinoembryonic antigen (CEA) that has a linear response over the 1.0 fg·mL?1 to 100 ng·mL?1 CEA concentration range with a 0.4 fg·mL?1 detection limit. The assay was applied to the determination of CEA in human serum samples.
Graphical abstract Schematic of the assay: GCE-glassy-carbon electrode, Ab- Antibody, BSA- Bovine serum albumin, Ag- Antigen. CdSe:Eu nanocrystals were used to design an ECL immunosensor for the detection of carcinoembryonic antigen.
  相似文献   

14.
Present work demonstrates the fabrication of new and facile sandwich‐type electrochemical immunosensor based on palladium nanoparticles (PdNPs), polyaniline (PANI) and fullerene‐C60 nanocomposite film modified glassy carbon electrode (PdNP@PANI‐C60/GCE) for ultrasensitive detection of Prostate‐specific antigen (PSA) biomarker. PdNP@PANI‐C60 was electrochemically synthesized on GCE and used as an electroactive substrate. PdNP@PANI‐C60 was characterized by scanning electron microscopy (SEM), energy‐dispersive X‐ray spectroscopy (EDS), cyclic voltammetry (CV) and electrochemical impedance spectroscopy (EIS). Primary antibody anti‐PSA (Ab1) was covalently immobilized on PdNP@PANI‐C60/GCE using NHS/EDC linkers. In the presence of PSA antigen, horseradish peroxidase secondary antibody (HRP‐Ab2) was brought into the surface of the electrode, developing stable amplified signals of H2O2 reduction. Under the optimal conditions, a linear curve for determination of PSA at the proposed immunosensor was 1.6×10?4 ng.mL?1 to 38 ng.mL?1 with a limit of detection (LOD) of 1.95×10?5 ng.mL?1. The proposed immunosensor was successfully validated in serum and urine samples towards PSA detection with satisfactory and acceptable results.  相似文献   

15.
In this paper, a thiol graphene‐thiol chitosan‐gold nanoparticles (thGP‐thCTS‐AuNPs) nanocomposites film with porous structure was fabricated by electrochemically depositing on glassy carbon electrode (GCE), which exhibited good biocompatibility and improved conductivity, to construct immunosensor free label for detection of carcinoembryonic antigen (CEA). The electrochemical behavior of this immunosensor was investigated by cyclic voltammetry. Under the optimum conditions, the immunosensor revealed a good amperometric response to CEA in two linear ranges (0.3–8.0 ng mL?1 and 8.0–100 ng mL?1) with a detection limit of 0.03 ng mL?1. The results indicated that the immunosensor has the advantages of good selectivity, high sensitivity, and good stability for the determination of CEA.  相似文献   

16.
Gold nanorods (AuNRs) integrated with ZnCdHgSe near-infrared quantum dots (AuNRs-ZnCdHgSe QDs) were successfully synthesized and characterized by transmission electron microscope, X-ray photoelectron spectroscopy, and X-ray diffraction. A glassy carbon electrode was decorated with the aforementioned AuNRs-ZnCdHgSe QDs nanocomposite, which provides a biocompatible interface for the subsequent immobilization of prostate specific antibody (anti-PSA). After being successively treated with glutaraldehyde vapor and bovine serum albumin solution, a photoelectrochemical immunosensing platform based on anti-PSA/AuNRs-ZnCdHgSe QDs/GCE was established. The photocurrent response of ZnCdHgSe QDs was tremendously improved by AuNRs due to the effect of resonance energy transfer which can be deduced from the dependence of the enhanced efficiency on the AuNRs with different length-to-diameter ratios and spectral absorption characteristics. A maximum photocurrent was obtained when the absorption spectrum of AuNRs matched well with the emission spectrum of ZnCdHgSe QDs. A photoelectrochemical immunosensor for prostate specific antigen (PSA) was achieved by monitoring the photocurrent variation. The photocurrent variation before and after being interacted with PSA solution exhibits a good linear relationship with the logarithm of its concentration (logcPSA) in the range from 1.0 pg mL−1 to 50.0 ng mL−1. The detection limit of this photoelectrochemical immunosensor is able to reach 0.1 pg mL−1 (S/N = 3). Determining PSA in clinical human serum was also demonstrated by using the developed anti-PSA(BSA)/AuNRs-ZnCdHgSe QDs/GCE electrode. The results were comparable with those obtained from an enzyme-linked immunosorbent assay method.  相似文献   

17.
An amperometric carcinoembryonic antigen (CEA) immunosensor was fabricated based on Prussian blue (PB), nano-calcium carbonate (nano-CaCO3) and nano-gold modified glassy carbon electrode. First, PB as a mediator was deposited on glassy carbon electrode to obtain a negatively charged surface. Then, positive nano-CaCO3 was adsorbed on the PB modified electrode through electrostatic interaction. Subsequently, gold nanoparticles were deposited on the nano-CaCO3/PB modified electrode. The use of two kinds of nanomaterials (nano-CaCO3 and nano-gold) with good biocompatibility as immobilization matrixes not only provides a biocompatible surface for protein loading but also avoids the leaking of PB. The size of nano-CaCO3 was characterized by transmission electron microscopy (TEM). The factors influencing the performance of the immunosensor presented were studied in detail. Under the optimized conditions, cyclic voltammograms (CV) determination of CEA showed a specific response in two concentration ranges from 0.3 to 20 ng mL?1 and from 20 to 100 ng mL?1 with a detection limit of 0.1 ng mL?1 at a signal-to-noise ratio of 3. The immunosensor presented exhibited high selectivity, sensitivity and good stability.  相似文献   

18.
In this work, an ultrasensitive peroxydisulfate electrochemiluminescence (ECL) immunosensor using in situ generation of l-homocysteine (l-Hcys) for signal amplification was successfully constructed for detection of carcinoembryonic antigen (CEA). In the reaction of biological methylation, S-adenosyl-l-homocysteine hydrolase (SAHH) catalyzed the reversible hydrolysis of S-adenosyl-l-homocysteine (SAH) to produce l-Hcys, which was inducted into ECL system to construct the immunosensor for signal amplification in this work. Simultaneously, Gold and palladium nanoparticles functionalized multi-walled carbon nanotubes (Au-PdNPs@MWCNTs) were prepared, which were introduced to immobilize the secondary antibody (Ab2) and SAHH with high loading amount and good biological activity due to their improved surface area and excellent biocompatibility. Then the proposed ECL immunosensor was developed by a sandwich-type format using Au-PdNPs@MWCNTs-SAHH-Ab2 as tracer and graphene together with AuNPs as substrate. Besides the enhancement of Au-PdNPs, the enzymatic catalysis reaction also amplified the ECL signal dramatically, which was achieved by efficient catalysis of the SAHH towards the hydrolysis of SAH to generate improved amount of l-Hcys in situ. Furthermore, due to the special interaction between Au-PdNPs and -SH or -NH2 in l-Hcys, l-Hcys would gradually accumulate on the surface of the immunosensor, which greatly enhanced the concentration of l-Hcys on the immunosensor surface and further improved the ECL intensity. With the amplification factors above, a wide linear ranged from 0.1 pg mL−1 to 80 ng mL−1 was acquired with a relatively low detection limit of 33 fg mL−1 for CEA.  相似文献   

19.
In the present study, a novel and ultrasensitive electrochemiluminescence (ECL) immunosensor based on luminol cathodic ECL was fabricated by using Au nanoparticles and Pt nanoparticles (nano-AuPt) electrodeposited on graphene–carbon nanotubes nanocomposite as platform for the detection of carcinoembryonic antigen (CEA). For this introduced immunosensor, graphene (GR) and single wall carbon nanotubes (CNTs) dispersed in chitosan (Chi-GR-CNTs) were firstly decorated on the bare gold electrode (GE) surface. Then nano-AuPt were electrodeposited (DpAu-Pt) on the Chi-GR-CNTs modified electrode. Subsequently, glucose oxidase (GOD) was employed to block the non-specific sites of electrode surface. When glucose was present in the working buffer solution, GOD immediately catalyzed the oxidation of glucose to in situ generate hydrogen peroxide (H2O2), which could subsequently promote the oxidation of luminol with an amplified cathodic ECL signal. The proposed immunosensor was performed at low potential (−0.1 to 0.4 V) and low concentration of luminol. The CEA was determined in the range of 0.1 pg mL−1 to 40 ng mL−1 with a limit of detection down to 0.03 pg mL−1 (S N−1 = 3). Moreover, with excellent sensitivity, selectivity, stability and simplicity, the as-proposed luminol-based ECL immunosensor provided great potential in clinical applications.  相似文献   

20.
Human Tau protein is the most reliable biomarker for the prediction of Alzheimer’s disease (AD). However, the assay to detect low concentrations of tau protein in serum is a great challenge for the early diagnosis of AD. This paper reports an electrochemiluminescence (ECL) immunosensor for Tau protein in serum samples. Gold nanostars (AuNSs) decorated on carbon nitride nanosheets (AuNS@g-CN nanostructure) show highly strong and stable ECL activity compared to pristine CN nanosheets due to the electrocatalytic and surface plasmon effects of AuNSs. As a result of the strong electromagnetic field at branches, AuNSs showed a better ECL enhancement effect than their spherical counterpart. For the fabrication of a specific immunosensor, immobilized AuNSs were functionalized with a monoclonal antibody specific for Tau protein. In the presence of Tau protein, the ECL intensity of the immunosensor decreased considerably. Under the optimal conditions, this ECL based immunosensor exhibits a dynamic linear range from 0.1 to 100 ng mL−1 with a low limit of detection of 0.034 ng mL−1. The LOD is less than the Tau level in human serum; thus, this study provides a useful method for the determination of Tau. The fabricated ECL immunosensor was successfully applied to the detection of Tau, the biomarker in serum samples. Therefore, the present approach is very promising for application in diagnosing AD within the early stages of the disease.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号