首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Sorption of single‐component vapors of benzene (Bz), n‐hexane (Hx), and cyclohexane (Cx), and of binary liquid mixtures of Bz/Hx and Bz/Cx in a polyimide from 3,3′,4,4′‐diphenylsulfone‐tetracarboxylic dianhydride (DSDA) and 2,8(6)‐dimethyl‐3,7‐diaminobenzothiophene‐5,5‐dioxide (DDBT) were investigated in detail at 333 K. Sorption and desorption of vapors followed the non‐Fickian kinetics and the sorption isotherms were concave to the vapor activity. For the binary liquids, the sorption isotherms of the Bz component were concave to the Bz composition in feed, whereas those of Hx and Cx were convex because of competitive sorption. As a result, the solubility selectivity was much larger than the sorption ratio of pure liquids. The concentration‐averaged diffusion coefficients of Bz (D̄Bz) and Hx (D̄Hx) were evaluated using the sorption and pervaporation data of the polyimide membrane toward the binary mixtures. A kind of coupling effect of the coexisting component on D̄ was observed. That is, D̄ of penetrant with smaller molecular size (Hx and Bz for Bz/Hx and Bz/Cx systems, respectively) was reduced by the presence of penetrant with larger molecular size (Bz and Cx, respectively) and vice versa. D̄Bz was similar to D̄Hx, but much larger than D̄Cx. The difference in PV behavior between Bz/Hx and Bz/Cx systems for glassy polymer membranes was understood based on the aforementioned features of sorption and diffusion. © 2000 John Wiley & Sons, Inc. J Polym Sci B: Polym Phys 38: 2954–2964, 2000  相似文献   

2.
Poly(ethylene oxide imide) segmented copolymer (PEO‐PI) membranes were crosslinked by the chemical reaction between ethylene glycol diglycidyl ether and benzylalcohol groups of diamine moieties in polyimide segments at high temperatures. Sorption and diffusion of penetrants took place in poly(ethylene oxide) segment microdomains. Sorption and desorption behavior of pure vapors such as benzene (Bz), cyclohexane (Cx) and n‐hexane (Hx) was classified as the Fickian diffusion. Sorption isotherms of binary liquid mixtures could be represented by the Flory–Rehner model, but the model overpredicted the sorption amounts of Cx and Hx, leading to small predictions of sorption selectivity αS for Bz/Cx and Bz/Hx systems. UNIFAC‐FV model fairly well predicted the sorption amounts of aromatic hydrocarbons, but significantly overestimated those of nonaromatic ones, leading to too small predictions of αS. Pervaporation (PV) behavior of PEO‐PI membranes was governed by sorption behavior followed by membrane swelling. Diffusion coefficient weakly depended on the minimum cross section of a penetrant. The diffusivity selectivity αD hardly depended on the feed composition and was about 1.4 and 0.75 for Bz/Cx and Bz/Hx, respectively. PV selectivity αPV was larger for Bz/Hx than for Bz/Cx because of larger αS. PEO‐PI membranes displayed high specific permeation flux Ql and reasonably high αPV for aromatic/nonaromatic hydrocarbons; for example, Ql = 60 Kg μm/(m2 h) and αPV = 8 for a feed mixture containing Bz, Tol, Hx, n‐Ot and i‐Ot of 20 wt % at 353 K. © 2000 John Wiley & Sons, Inc. J Polym Sci B: Polym Phys 38: 1800–1811, 2000  相似文献   

3.
Pervaporative performances were investigated for dehydration of water–acetonitrile using nanocomposite metal oxide and Pervap® 2202 membranes. Poly (vinyl alcohol) based nanocomposite metal oxide membranes were prepared through co-precipitation of different amounts of Fe (II) and Fe (III). The freestanding nanocomposite metal oxide membranes were characterized by Transmission electron microscopy and X-ray diffraction. Sorption studies evaluated the extent of interaction and degree of swelling of the membranes. Fe containing PVA polymer matrix showed improved flux and selectivity. In order to observe simultaneous effect of flux and selectivity, pervaporation separation index showed 10 wt.% iron oxide containing membrane is the most amongst all tested. The diffusion coefficients were calculated using pervaporation results and sorption kinetics data. An attempt was made to predict sorption selectivity thermodynamically. PV separation factor was observed to be governed by sorption and/or diffusion phenomena and sorption selectivity was found to be higher than PV separation factor. Prediction of concentration profile in the membrane was also attempted and the results showed that water concentration in the membrane drops down with increase in membrane thickness.  相似文献   

4.
High molecular weight polyimide was successfully prepared from thianthrene‐2,3,7,8‐tetracarboxylic acid‐5,5,10,10‐tetraoxide (TADATO‐4A) and 3,7‐diamino‐2,8(6)‐dimethyldibenzothiophene sulfone (DDBT) via the Yamazaki–Higashi phosphorylation method in the presence of triphenyl phosphite (TPP) and pyridine (Py). The obtained polyimide showed about 3–4 times larger inherent viscosity than that prepared by the conventional two‐step method in which the anhydride form (TADATO) of TADATO‐4A was used. The combination of the conventional two‐step method and Yamazaki–Higashi phosphorylation method, in which a dianhydride monomer [3,3′,4,4′‐diphenylsulfonetetracarboxylic dianhydride (DSDA)] was allowed to react with excessive DDBT to form an amine end‐capped polyamic acid oligomer and subsequently the oligomer was further polymerized with TADATO‐4A in the presence of TPP and Py, succeeded in giving the high molecular weight copolyimide, TADATO/DSDA(1/1)‐DDBT. However, both TADATO‐DDBT and TADATO/DSDA(1/1)‐DDBT showed fairly poor thermal stability due to the highly rigid structures. The pervaporation (PV) properties of the prepared polyimide membranes for benzene/cyclohexane (Bz/Cx) and benzene/n‐hexane (Bz/n‐Hx) mixtures were investigated. TADATO‐DDBT showed similar PV performance to DSDA‐DDBT at 60 °C. The sorption measurement revealed that these two kinds of polyimide membranes had a similar sorption amount, solubility selectivity, and diffusivity selectivity. The PV performance of TADATO/DSDA(1/1)‐DDBT was also found similar to DSDA‐DDBT for Bz/Cx mixture. © 2000 John Wiley & Sons, Inc. J Polym Sci A: Polym Chem 38: 895–906, 2000  相似文献   

5.
Desulphurization mechanism of polyethylene glycol (PEG) membranes has been investigated by the study of solubility and diffusion behavior of typical gasoline components through PEG membranes with various crosslinking degrees. The sorption, diffusion and permeation coefficients were calculated by the systematic studies of dynamic sorption curves of gasoline components such as thiophene, n-heptane, cyclohexane, cyclohexene and toluene in PEG membranes. Furthermore, the temperature dependence of diffusion and solubility coefficients and the influence of crosslinking degree on sorption and diffusion behaviors were conducted to elucidate the mass-transfer mechanism. According to the discussions on dynamic sorption curves, transport mode, activation energy and thermodynamic parameters, thiophene species were the preferential permeation components. Crosslinking is an effective modification way to improve the overall performance of PEG membranes applied in gasoline desulphurization. The pervaporation (PV) and gas chromatography (GC) experiments results corresponded to the conclusions. All these investigations will provide helpful suggestions for the newly emerged membrane desulphurization technology and complex organic mixture separation by pervaporation.  相似文献   

6.
Dense and composite membranes were developed from polyether block amide (PEBA). Polyacrylonitrile (PAN) and polysulfone (PSf) were used as the porous supports for the composite membranes. The membranes were tested for pervaporation separation of ethylbutanoate (ETB) solutions. Sorption and desorption experiments were also performed to provide data for analysis of mass transport based on resistance-in-series model.

The composite membranes with polyether block amide (PEBA) casted on PSf (PEBA/PSf) showed superior pervaporation performance than that casted on PAN (PEBA/PAN). The analysis of transport resistances revealed that: (1) the resistances in liquid boundary of ETB were highest and, therefore, were the controlling resistances; and (2) the transport resistances in the porous supports were much lower than those in the membrane top layers.

The results on plasticizing coefficients showed that ETB plasticized the membranes (positive, kii) but water did not (negative, kjj). Negative coupling coefficients (kij) indicated that water reduced diffusivity of ETB in the membranes and the presence of ETB enhanced water diffusion in the membranes due to positive kji.  相似文献   


7.
Using glycidyl methacrylate (GMA) as a grafting monomer and a porous high density polyethylene film as a substrate, plasma-graft polymerized membranes were prepared by the different plasma treatment manners, namely, homogeneous both-side (HBS) and one side (OS) treatments. The poly(GMA)-grafted membranes displayed two different types of the feed composition dependence of permeation flux and separation factor for pervaporation (PV) of benzene/cyclohexane (Bz/Cx) mixtures, depending on the plasma treatment manner and the graft yield. The membranes prepared by the HBS treatment and under mild polymerization conditions displayed the highest performance with a permeation flux of 0.30–0.37 kg/m2 h and a separation factor of 19–22 at feed Bz of 60 wt% and 70°C. The membranes exhibited high performance with excellent durability for PV of other aromatic/aliphatic hydrocarbon mixtures.  相似文献   

8.
This work is concerned with the separation of propyl propionate/water mixtures by pervaporation using PEBA membranes, which is relevant to aroma compound recovery from dilute aqueous solutions. The solubility and diffusivity pertinent to the permselectivity were investigated. The effects of feed concentration and the operating temperature on the separation performance were studied. Under the experimental conditions tested, the permeate concentration was much higher than the solubility limit, and upon phase separation substantially pure propyl propionate could be achieved. The diffusivity of propyl propionate through the membrane from its dilute aqueous solutions was affected by the solution concentration exponentially. It was shown that the permselectivity of the membrane for propyl propionate/water separation was mainly derived from its sorption selectivity due to the organophilicity of the membrane. The diffusivity of pure propyl propionate in the membrane was about 28 times higher than pure water diffusivity.  相似文献   

9.
The permeation and separation characteristics of volatile organic compounds (VOCs), such as chloroform, benzene, and toluene, from water by pervaporation through cross-linked poly(dimethylsiloxane) membranes prepared from poly(dimethylsiloxane) dimethylmethacrylate macromonomer (PDMSDMMA) and divinyl compounds, such as ethylene glycol dimethylmethacrylate (EGDM), divinyl benzene (DVB), divinyl siloxane (DVS), and divinyl perfluoro-n-hexane (DVF) are described. When aqueous solutions containing 0.05 wt.% VOCs were permeated through cross-linked PDMSDMMA membranes, these membranes showed high VOC/water selectivity and permeability. Both VOC/water selectivity and permeability were affected significantly by the divinyl compound. Furthermore cross-linked PDMSDMMA membranes showed the highest chloroform/water selectivity. The VOC/water selectivity was mainly governed by the sorption selectivity rather than the diffusion selectivity. However, the difference in the selectivity between different types of VOCs depended on differences in the diffusivity of permeants. With increasing downstream pressure, the VOC/water selectivity of all cross-linked PDMSDMMA membranes increased, but the permeability decreased. A PDMSDMMA–DVF membrane exhibited a normalized permeation rate of 1.9 × 10−5 kg m/m2 h and a separation factor for chloroform/water of 4850, yielding a separation index of 9110. The pervaporation characteristics of the cross-linked PDMSDMMA membranes are discussed based on their chemical and physical structures as well as the chemical and physical properties of the permeants.  相似文献   

10.
Using a solution technique, chitosan-based polyelectrolyte complexes (PECs) were developed as pervaporation membranes by incorporating phosphotungstic acid (PTA). The resulting membranes were characterized by Fourier transform infrared spectroscopy (FTIR), wide-angle X-ray diffraction (WAXD), scanning electron microscopy (SEM) and thermogravimetric analysis (TGA). Membranes were tested for their ability to separate water–isopropanol mixtures by pervaporation in the temperature range of 30–50 °C. The experimental results demonstrated that both flux and selectivity were increased simultaneously with increasing PTA content in the membrane. The permeation flux of pure chitosan membrane was increased dramatically from 4.13 to 11.70 × 10−2 kg/m2 h and correspondingly its separation factor was increased from 4490 to 11,241 and then decreased to 7490 at 30 °C for 10 mass% of water in the feed. The total flux and flux of water were found to be almost overlapping particularly for PECs membranes, suggesting that these could be used effectively to break the azeotropic point of water–isopropanol mixtures. From the temperature dependency of diffusion and permeation values, the Arrhenius activation parameters were estimated and discussed in the context of membranes efficiency. The pure chitosan and a small amount of PTA-incorporated PECs membranes exhibited positive heat of sorption while other PECs membranes exhibited negative heat of sorption, giving exothermic contribution.  相似文献   

11.
Copolymers of methyl acrylate and acrylic acid were synthesized to fabricate membranes ionically crosslinked using aluminum acetylacetonate for the separation of toluene/i-octane mixtures by pervaporation at high temperatures. The formation of the ionic crosslinking via bare aluminum cations was characterized by UV–VIS spectroscopy and solubility tests. Reproducibility and the reliability of the methodology for membrane formation and crosslinking were confirmed. The effects of acrylic acid content, crosslinking conditions, pervaporation temperature, and feed composition on the normalized flux and the selectivity for toluene/i-octane mixtures were determined. A typical crosslinked membrane showed a normalized flux of 26 kg μm m−2 h−1 and a selectivity of 13 for a 50/50 wt.% feed mixture at 100°C. The pervaporation properties including solubility selectivity and diffusivity selectivity are discussed in terms of swelling behavior. The performance of the current membranes were benchmarked against other membrane materials reported in the literature.  相似文献   

12.
采用液相共混的方法制备了ZSM-5分子筛填充壳聚糖膜.扫描电镜表征表明分子筛在膜中分散均匀,膜表面没有明显缺陷.考察了填充膜在碳酸二甲酯/甲醇混合液中的溶胀和吸附行为,探讨了填充膜中分子筛含量及操作温度对渗透汽化膜分离性能的影响.结果表明膜优先吸附甲醇,其分离性能主要由溶解过程控制;随着膜中分子筛含量的增加,膜的溶胀度增大,渗透通量大幅度提高;渗透通量与操作温度符合Arrhenius关系式.与壳聚糖均质膜相比,ZSM-5分子筛填充壳聚糖膜对甲醇和碳酸二甲酯混合物具有更好的分离效果.  相似文献   

13.
Tosylcelluloses (TosCells) with different degrees of tosylation were synthesized as membrane materials for the separation of benzene/cyclohexane (Bz/Chx) mixtures. TosCell membranes showed a high benzenepermselectivity for the Bz/Chx mixtures in pervaporation (PV). An increase in the benzene concentration in the feed mixtures increased permeation rate but decreased the benzenepermselectivity of the TosCell membranes. The increase in the permeation rate was attributed to the increase of the degree of swelling of the TosCell membranes by the feed mixtures and the decrease in the benzenepermselectivity was mainly caused by the decrease of sorption selectivity. With low benzene concentrations in the Bz/Chx mixtures, the permeation rate of a TosCell membrane with a higher degree of tosylation was greater than that with a lower degree of tosylation, but was vice versa with a high benzene concentration. The benzenepermselectivity of the former TosCell membrane was higher than that of the latter membrane. Differences of the permeation rate and benzenepermselectivity with changes in the benzene concentration in the feed mixture and degree of tosylation of the TosCell membrane were significantly influenced by the degree of swelling of the TosCell membrane and the benzene concentration sorbed into the TosCell membrane. Mechanism of separation for the Bz/Chx mixtures through the TosCell membranes is discussed by the solution–diffusion model.  相似文献   

14.
Separation of hydrazine from aqueous solutions with ethylcellulose membranes has been investigated by using the pervaporation technique. The effect of membrane thickness, concentration polarization, and feed concentration on flux and selectivity were evaluated. A separation mechanism is proposed based on the measurements of sorption, and diffusion coefficients, and estimations of Flory–Huggins interaction parameters and Hansen's solubility parameter. States of water, hydrazine, and hydrazine hydrate are explained with DSC spectra. The specific interaction sites in ethylcellulose matrix where the solvent interacts extensively with the polymer have been identified by FTIR analysis. © 1999 John Wiley & Sons, Inc. J Polym Sci B: Polym Phys 37: 1969–1980, 1999  相似文献   

15.
Silicalite-filled poly(siloxane imide) (PSI) membranes were prepared for the separation of volatile organic compounds (VOCs) from water via pervaporation. PSI copolymer was synthesized by polycondensation of 3,3′,4,4′-benzophenonetetracarboxylic dianhydride (BTDA) with a siloxane-containing diamine, e.g., poly(dimethylsiloxane), bis(3-aminopropyl) terminated (PSX), added with 3,3-diaminodiphenyl sulfone (DDS). 2,4,6-Triamine pyrimidine (TAP) was added into the casting solution in order to enhance the compatibility between the polymeric matrix and the filler, silicalite. The PSI membranes were characterized by SEM. The surface morphology for the membrane with the addition of TAP differs from that without TAP. The latter seems to be consisting of particles in the membrane surface. The sorption selectivity of the PSI membranes for chloroform/water solutions was investigated, and there was a highest value for it around 50 wt.% of PSX content. The pervaporation performance of the membranes was studied with the separation of chloroform/water mixture. The silicalite-filled membrane with 120 μm thickness exhibit a high total permeation flux of 280 g m−2 h−1 with separation factor of 52.2 for 1.2 wt.% of the chloroform/water mixture.  相似文献   

16.
Three different types of blend membranes based on chitosan and polyacrylic acid were prepared from homogeneous polymer solution and their performance on the pervaporation separation of water-ethanol mixtures was investigated. It was found that all membranes are highly water-selective. The temperature dependence of membrane permselectivity for the feed solutions of higher water content (>30 wt%) was unusual in that both permeability and separation factor increased with increase in temperature. This phenomenon might be explained from the aspect of activation energy and suggested that the sorption contribution to activation energy of permeation should not always be ignored when strong interaction occurs in the pervaporation membrane system.A comparison of pervaporation performance between composite and homogeneous membranes was also studied. Typical pervaporation results at 30°C for a 95 wt% ethanol aqueous solution were: for the homogeneous membrane, permeation flux = 33 g/m2 h, separation factor = 2216; and for the composite membrane, permeation flux = 132 g/m2 h, separation factor = 1008. A transport model consisting of dense layer and porous substrate in series was developed to describe the effect of porous substrate on pervaporation performance.  相似文献   

17.
Dense tubular Ba0.5Sr0.5Co0.8Fe0.2O3−δ (BSCFO) membranes were successfully prepared by the plastic extrusion method. The oxygen permeation flux was determined at different oxygen partial pressures in the shell side and different temperatures between 700 and 900 °C. The oxygen vacancy diffusion coefficients (Dv) at different temperatures were calculated from the dependence of oxygen permeation flux on the oxygen partial pressure term based on the surface current exchange model. No unsteady-state of oxygen permeation flux was observed at the initial stage in our experiments. The reason is the equilibrium time is too short (less than 10 min) to observe the unsteady-state in time. The increase of the helium flow rate can increase the oxygen permeation flux, which is due to the decrease of the oxygen partial pressure in the tube side with increasing of the helium flow rate. The oxygen permeation flux can also be affected by the air flow rate in the shell side when the air flow rate is lower than 150 ml/min. But the oxygen permeation flux is insensitive to the air flow rate when the air flow is higher than 150 ml/min. The membrane tube was operated steadily for 150 h with oxygen permeation flux of 1.12 ml/(cm2 min) at 875 °C. X-ray diffraction (XRD) and energy dispersive spectroscopy (EDS) analysis showed that both the surface exposed to air and the surface exposed to helium of the BSCFO membrane tube after permeation for 150 h are similar to the fresh membrane tube in composition and structure. These results indicated that the membrane tube exhibits high structure stability.  相似文献   

18.
In this paper, the acetone-cast poly(vinylidene fluoride-co-hexafluoropropylene) (P(VDF-co-HFP)) membranes were prepared by isothermally vacuum-dried at 60 °C and were employed in pervaporation of methyl acetate (MeAc) or ethyl acetate (EtAc) dissolved water solutions. DSC study on the swelling process indicated that two states of both MeAc and EtAc in their swollen P(VDF-co-HFP) membranes might exist which were the ‘bound state’ and ‘bulk state’. In addition, relative to the pure EtAc, the pure MeAc had stronger interaction with the P(VDF-co-HFP) membrane, making for its higher solubility in and lower diffusivity through the membrane. However, there is a competition between the organic permeants/water interactions and the organic permeants/polymer interactions when the P(VDF-co-HFP) membrane was tested for its pervaporative separating properties. With respect to MeAc in its water mixtures, EtAc in its water mixtures had higher solubility in the membrane instead because of its weaker interaction with water. As a result, better separating properties (higher permeate flux and separation factor) when the P(VDF-co-HFP) membrane was in pervaporation of the EtAc/water mixtures were obtained.  相似文献   

19.
Hybrid membranes were prepared using poly(vinyl alcohol) (PVA) and tetraethylorthosilicate (TEOS) via hydrolysis followed by condensation. The obtained membranes were characterized by Fourier transform infrared spectroscopy, wide-angle X-ray diffraction and differential scanning calorimetry. The remarkable decrease in degree of swelling was observed with increasing TEOS content in membranes and is attributed to the formation of hydrogen and covalent bonds in the membrane matrix. The pervaporation performance of these membranes for the separation of water–acetic acid mixtures was investigated in terms of feed concentration and the content of TEOS used as crosslinking agent. The membrane containing 1:2 mass ratio of PVA and TEOS gave the highest separation selectivity of 1116 with a flux of 3.33 × 10−2 kg/m2 h at 30 °C for 10 mass% of water in the feed. Except for membrane M-1, the observed values of water flux are close to the values of total flux in the investigated composition range, signifying that the developed membranes are highly water selective. From the temperature dependence of diffusion and permeation values, the Arrhenius apparent activation parameters have been estimated. The resulting activation energy values, obtained for water permeation being lower than those of acetic acid permeation values, suggest that the membranes have higher separation efficiency. The activation energy values calculated for total permeation and water permeation are close to each other for all the membranes except membrane M-1, signifying that coupled-transport is minimal as due to higher selective nature of membranes. Further, the activation energy values for permeation of water and diffusion of water are almost equivalent, suggesting that both diffusion and permeation contribute almost equally to the pervaporation process. The negative heat of sorption values (ΔHs) for water in all the membranes suggests the Langmuir's mode of sorption.  相似文献   

20.
Sol-gel polyimide-silica composite membrane: gas transport properties   总被引:2,自引:0,他引:2  
The effect of introduction of silica particles prepared by the sol-gel technique on the gas transport properties of a polyimide film was studied. The sorption and permeation of N2, O2, CO2, H2 and CH4 were studied and correlated with morphological changes in the polymer structure. From sorption isotherms, we observed that the composite membrane presents higher solubility coefficients than the polyimide one. The solubility coefficient ratio between the composite and the polyimide is about 1.5–2.0. The isotherms were analyzed in terms of the dual mode sorption. The Henry's coefficient and the Langmuir's affinity and saturation constants were obtained allowing to calculate the Langmuir to Henry concentration ratios as function of the gas pressure. These ratios decrease until zero within a certain pressure range as long as the Langmuir's mode is acting and they are higher for the polyimide membrane when compared with the composite one. This study was completed with calorimetric measurements during the sorption. The gas interaction energy in kJ/mol decreases within the same pressure range as previously described. The measured energies are higher for the polyimide film when compared with the composite one because the polyimide membrane presents a stronger energetic effect caused by a higher Langmuir's contribution. From permeation studies at 3.155 Pa, the composite membrane showed higher permeability coefficients and permselectivities than the polyimide one. All these results were explained, taking into account the difference on the imidization degree of both membranes and the morphological changes which may be induced by the silica nodules in the organic/inorganic interphases.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号