首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
江斌  张冶金  周文君  陈微  刘安金  郑婉华 《中国物理 B》2011,20(2):24208-024208
The local density of states (LDOS) of two-dimensional square lattice photonic crystal (PhC) defect cavity is studied.The results show that the LDOS in the centre is greatly reduced,while the LDOS at the point off the centre (for example,at the point (0.3a,0.4a),where a is the lattice constant) is extremely enhanced.Further,the disordered radii are introduced to imitate the real devices fabricated in our experiment,and then we study the LDOS of PhC cavity with configurations of different disordered radii.The results show that in the disordered cavity,the LDOS in the centre is still greatly reduced,while the LDOS at the point (0.3a,0.4a) is still extremely enhanced.It shows that the LDOS analysis is useful.When a laser is designed on the basis of the square lattice PhC rod cavity,in order to enhance the spontaneous emission,the active materials should not be inserted in the centre of the cavity,but located at positions off the centre.So LDOS method gives a guide to design the positions of the active materials (quantum dots) in the lasers.  相似文献   

2.
We report self-collimating demonstration in planar photonic crystals (PhCs) fabricated in silicon-on-insulator (SOI) wafers using 0.18 μm silicon complementary metal oxide semiconductor (CMOS) techniques. This process is original in the context of self-collimating PhC. Emphasis was on demonstrating self-collimation effect through the use of standard CMOS equipment and process development of an optical test chip using a high-volume manufacturing facility. The PhC were designed on 230 nm-top-Si layer using a square lattice of air-holes with 270 nm in diameter. The lattice constant of the PhC was 380 nm. The 1 mm self-collimation was observed at the wavelengths of 1620 nm.  相似文献   

3.
D-shaped optical fiber microwire (OFM) devices are investigated theoretically. They can be obtained by wrapping OFMs on removable rods or laying the OFMs on disposable substrates. Optical wave guiding properties of these devices are discussed with numerical simulations. Dispersion properties of OFMs with different radii are studied as well. A grating-based D-shaped OFM is proposed for sensing applications. The corresponding sensitivity could reach 1100 nm/RIU (refractive index unit) due to its large outside evanescent field.  相似文献   

4.
二维六方氮化硼(hexagonal boron nitride,hBN)材料在产生光学稳定的超亮量子单光子光源领域有着潜在应用,有望用于量子计算和信息处理平台,已成为研究热点.而光学非对称传输设备是集成量子计算芯片中的关键器件之一.本文从理论上提出了一种基于hBN材料光子晶体异质结构的纳米光子学非对称光传输器件.运用平面波展开法研究了光子晶体的能带结构与等频特性,从理论上分析了hBN异质结构中可见光波非对称传输的可行性.同时,采用时域有限差分方法研究了可见光波段异质结构的晶格常数和半径对透射光谱的影响.研究结果显示,该结构实现了在610—684 nm波长范围内TE偏振光的非对称传输,在652 nm波长处正向透射率达到0.65,反向透射率为0.006,非对称传输透射对比度高达0.98.本文提出的结构模型为基于hBN的新型纳米光子器件设计提供了新的可能性,可用于不同功能光学器件的集成设计.  相似文献   

5.
This paper reports the design and principles of two dimensional rod-type photonic crystal (PhC) line defect waveguides for bandgap based optical waveguiding, static modulation and high speed dynamic optical switchings. Experiments were carried out for both high aspect ratio and slab type configurations. The differences in waveguiding mechanisms for the two configurations resulting from the presence of bottom cladding systems, without out-of-plane symmetries are compared for their advantages and disadvantages. In particular, the designs of non-top-clad optical waveguides of layout sizes within micrometers and operational frequencies centered at the optical communication wavelength of 1550 nm, were investigated for the feasibility of large scale integration by batch fabrication process techniques – such as sub-micrometer optical lithography etc. Based on such techniques, specifically designed dispersions of line defect PhC waveguides within a missing row of PhC rods were accompanied by optical testing structures of suitable coupling modes. Optical measurements of waveguiding coefficients were therefore enabled for the different configurations, together with further static and dynamic modulations. PACS 42.70.Qs  相似文献   

6.
In this paper, photonic crystal (PhC) based on two dimensional (2D) square and hexagonal lattice periodic arrays of Silicon Carbide (SiC) rods in air structure have been investigated using plane wave expansion (PWE) method. The PhC designs have been optimized for telecommunication wavelength (λ = 1.55 μm) by varying the radius of the rods and lattice constant. The result obtained shows that a photonic band gap (PBG) exists for TE-mode propagation. First, the effect of temperature on the width of the photonic band gap in the 2D SiC PhC structure has been investigated and compared with Silicon (Si) PhC. Further, a cavity has been created in the proposed SiC PhC and carried out temperature resiliency study of the defect modes. The dispersion relation for the TE mode of a point defect A1 cavity for both SiC and Si PhC has been plotted. Quality factor (Q) for both these structures have been calculated using finite difference time domain (FDTD) method and found a maximum Q value of 224 for SiC and 213 for Si PhC cavity structures. These analyses are important for fabricating novel PhC cavity designs that may find application in temperature resilient devices.  相似文献   

7.
Yonemura M  Kawasaki A  Kato S  Kagami M  Inui Y 《Optics letters》2005,30(17):2206-2208
We report a polymer waveguide module that provides bidirectional communication over a single plastic optical fiber (POF) with dual visible wavelength LEDs. The module is constructed using light-induced self-written waveguides, which enables a three-dimensional optical circuit for visible wavelength division multiplexing to be fabricated by an extremely simple process. We demonstrated 250 Mbits/s communication using a pair of these modules that each contained one green (lambda = 495 nm) and one red (lambda = 650 nm) LEDs by measuring the bit error rates. The results indicate that the system could transmit over more than 20 m of POF in full duplex mode.  相似文献   

8.
We demonstrate optical properties of one-dimensional photonic crystals (PC), which are fabricated using high-aspect-ratio etching on a V-grooved silicon wafer. The measured transmission spectrum has an obvious band gap; the suppression is over 30 dB. The quite small insertion loss of 1.9 dB is achieved by induced coupled plasma (ICP) cryogenic etching and direct coupling to the optical fiber aligned in the V-groove. We also successfully observed peaks originating from a localized cavity mode. Such a microcavity enables control of the light, which qualifies photonic crystal as a fundamental structure of optical functional devices. These results lead to achievement of integrated Si-based photonic circuits.  相似文献   

9.
In this paper, we have designed, fabricated and characterized silicon nitride grating couplers with high efficiency at 1490 nm. The devices are fabricated using deep UV photolithography with resolution requirement of ~500 nm. The grating coupler fabricated yields a peak coupling efficiency of ?5.1 dB. The 1-dB bandwidth of the grating coupler is 60 nm.  相似文献   

10.
Two-dimensional photonic crystals (PhC) using epitaxial ferroelectric, barium titanate (BTO) thin films as the dielectric medium were fabricated and their thermo-optical response measured and compared to theory. The nanopatterned PhC consists of a square array of air holes 300 nm deep, a period of 780 nm and area 200 × 200 μm2. The large refractive index of BTO leads to a high contrast structure that shows strong optical diffraction. Optical diffraction is analyzed along the 〈1 0〉 and 〈1 1〉 directions from phase grating measurements. The thermal tunability of BTO PhC is characterized from the attenuation of the first order diffraction. There is a 3 dB extinction ratio when the temperature increases by 120 °C, which corresponds to an increase of 0.05 in the BTO refractive index. Finite difference time domain (FDTD) technique is used to calculate the PhC band structure and the temperature dependence of the diffraction efficiency. The large change in the diffraction efficiency indicates that thermally tunable BTO PhCs may be useful as active ultra-compact photonic switches.  相似文献   

11.
A flexible integration of optical switch with optical power splitting and attenuating functions has been proposed to optimally serve optical fiber-based networking applications. In this switch, an etched binary-slope sidewall reflector is electrostatically actuated in and out of the plane to manipulate optical signals between input and output optical fibers. The fabrication process is a simple combination of a bulk-silicon micromachining process and silicon-to-glass anodic bonding where fiber alignment grooves, reflectors and actuators are fabricated on the same silicon substrate. Ball-lensed fibers are assembled with the device to achieve high coupling efficiency. Performances of the fabricated devices are measured and discussed. The switching time is less than 9 ms at 31 V. The excess loss of the device is less than 3 dB and the controllable attenuation range is up to 38 dB at 139 V, respectively. Moreover, polarization-dependent loss is less than 0.7 dB in the whole attenuation and splitting range.  相似文献   

12.
Single-prism systems are used to fabricate electrically switchable Photonic Crystal (PhC) structures in Polymer Dispersed Liquid Crystal (PDLC) films. The optical configuration is simple, stable and repeatable. A good agreement between theoretical and experimental results is obtained for the PhC structures. Hexagonal far-field diffraction patterns and electrical switching characteristics are also investigated. The smallest droplets of liquid crystals are 10 nm in diameter. The switching voltage can be decreased to 13.3 V/μm.  相似文献   

13.
Two-dimensional Si photonic crystals on oxide using SOI substrate   总被引:1,自引:0,他引:1  
Two-dimensional photonic crystals (2D-PhCs) on oxide can be easily incorporated into photonic integrated circuits. Although an asymmetrical structure (air/PhC/oxide) is advantageous in terms of ease of fabrication, it has been pointed out that such a structure may have no photonic band gap (PBG). To clarify the characteristics of the asymmetrical structure, we calculated the band structure using the three-dimensional (3D) FDTD method and measured the transmission characteristics of a fabricated 2D Si-PhC on oxide. The calculations show that we can use a quasi-PBG even in an asymmetrical structure when the PhC thickness satisfies the single-mode condition. The measured transmission characteristics correspond to the calculated band structure and reveal the existence of a quasi-PBG. These results show that the asymmetrical 2D Si-PhC-on-oxide structure can be applied to various optical devices.  相似文献   

14.
We demonstrate a holographic approach for the fabrication of large-area photonic crystal (PhC) microstructures by applying a single top-cut hexagonal prism (TCHP). The interference patterns of the beams from the TCHP are calculated. Various two-dimensional PhC structures are fabricated in photo-resist films. They include symmetrical hexagonal structures, the honey-comb structure and the hexagonal structure with skewed elliptical rods. The first structures come from six-beam and symmetrical three-beam interfering. The second structure appears when the beam is incident on the TCHP obliquely. The third structure is obtained when adjacent three beams or four beams are interfered. The period can be decreased to 285 nm. SPM observations of the PhCs provide the basis for measurement of their structural parameters. A good agreement is obtained for the measured structural parameters and calculated results for the PhCs. The photonic band gaps of the hexagonal symmetrical and honeycomb structures are derived by using the plane wave method. These results reveal that, by varying the number of split beams and the incident angle, using the single TCHP PhCs, different band gaps can be achieved.  相似文献   

15.
The performance of a simple sensor system prepared using gold (Au)-deposited glass rods of 1 to 4 mm in diameter with a deposition length of 100 mm based on surface plasmon resonance (SPR) is presented. The sensor properties of the Au-deposited glass rods of 2 mm in diameter with deposition lengths of 10 to 100 mm are also presented. The sensor system consists of a light-emitting diode (LED) as the light source and a photodiode (PD) as the detector. The response curves and sensor properties of the Au-deposited glass rod with a Au film thickness of 45 nm obtained by using three LEDs with yellowish green (563 nm), red (660 nm), and infrared (940 nm) emissions were investigated. The results were compared with those of a corresponding Au-deposited optical fiber sensor with a core diameter of 0.2 mm. Though the sensitivity, response, and detection limit of the Au-deposited glass rod sensor are lower than those of the optical fiber sensor, the fabrication and handling of the Au-deposited glass rod sensor are easier because of the robustness. Since the dielectric constant of Au changes with the light wavelength, the sensor properties of both the Au-deposited glass rod sensor and the optical fiber sensor depend strongly on the wavelength of the incident light and can be controlled by changing the LED emission wavelength. This sensor system is a new SPR-based refractometer with easy construction and operation. Ethanol concentrations in various spirits were measured with this SPR-based refractometer and the results agreed well with those measured with an Abbe refractometer.  相似文献   

16.
Hu Z  Qiu W  Cheng X  Luo Y  Qin C  Wu W  Wang X  Tian X  Wang T  Wang L  Zhang Q  Zhu B  Zou G  Zhang Q  Chen Y 《Optics letters》2011,36(10):1902-1904
A liquid core optical fiber (LCOF) composed of hollow fiber and a solution of Eu(TTA)(3)Phen (TTA=2-thenoyltrifluoroacetone, Phen=1, 10-phenanthroline) in dimethyl sulfoxide (DMSO) has been fabricated, in which the concentration of Eu(TTA)(3)Phen in DMSO is 0.8 wt.%, the core diameter of the LCOF is 10 μm, and the fiber length is 8.1 cm. By the end pumping with a diode-pumped solid-state laser at 355 nm, a small optical signal at 613 nm was amplified with a gain of 8.2 dB at a pump power of 203 mW. Based on this experimental result, a liquid core optical fiber amplifier can be realized by the LCOF, which has wide potential applications in many optical devices.  相似文献   

17.
We theoretically demonstrate the slow light capabilities of 2D silicon carbide based photonic crystal W1 waveguides (SiC-PhC-W1Ws) with numerical simulations. The PhC is assumed to be created by devising air-holes with hexagonal lattice in a standard SiC substrate having oscillator type ordinary refractive index. Numerical simulations show that by means of selective optofluidic infiltration and varying the air-holes radii, SiC-PhC-W1Ws are capable of slowing light down by about 473 times while their group velocity dispersions are tailored to near zero values. Our numerical study also suggests the possibility of slow-light guiding with ng × Δλ/λc values as high as 0.42 in SiC-PhC-W1Ws at optical telecommunications wavelengths.  相似文献   

18.
全光纤型MZ干涉仪是未来高速光器件和光信号处理技术的基本部件。在单模光纤中采用周期压力方式写入LPG对,构成一种光纤型MZI,可实现U波段的波长调制。在实验中得到了1650nm的MZI的干涉光谱。LPG的写入方式简陋,实验结果对1650nm处U波段光开关、滤波器等全光器件的研究有参考意义。  相似文献   

19.
Silicon-based woodpile photonic crystals (PhCs) composed of air columns have a large gap/midgap ratio exceeding 20% over a wide dimensional range of the cross section of the air column when the cross section is deformed to a rectangular shape extended normal to the stacking direction. Such a PhC structure can be formed using a simple technique based on 45° dry etching. Furthermore, introducing twin air columns with small cross sections instead of corresponding mother air columns yields a defect state at the region where the columns cross. Since the fabrication process is a planar-type Si wafer process, fabricated PhCs can be easily combined with conventional electronic circuits and optical elements, such as Si waveguides and switches.  相似文献   

20.
康哲  苑金辉  李莎  解松霖  颜玢玢  桑新柱  余重秀 《中国物理 B》2013,22(11):114211-114211
In this paper,we propose an optical quantization scheme for all-optical analog-to-digital conversion that facilitates photonics integration.A segment of 10-m photonic crystal fiber with a high nonlinear coefficient of 62.8 W 1/km is utilized to realize large scale soliton self-frequency shift relevant to the power of the sampled optical signal.Furthermore,a 100-m dispersion-increasing fiber is used as the spectral compression module for further resolution enhancement.Simulation results show that 317-nm maximum wavelength shift is realized with 1550-nm initial wavelength and 6-bit quantization resolution is obtained with a subsequent spectral compression process.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号