首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 484 毫秒
1.
A. Henstra 《Molecular physics》2013,111(7):859-871
Nuclear orientation via electron spin locking (NOVEL) is a technique to orient nuclear spins embedded in a solid. Like other methods of dynamic nuclear polarization (DNP) it employs a small amount of unpaired electron spins and uses a microwave field to transfer the polarization of these unpaired electron spins to the nuclear spins. Traditional DNP uses CW microwave fields, but NOVEL uses pulsed electron spin resonance (ESR) techniques: a 90 degree pulse–90 degree phase shift–locking pulse sequence is applied and during the locking pulse the polarization transfer is assured by satisfying the Hartmann–Hahn condition. The transfer is coherent and similar to coherence transfer between nuclear spins. However, NOVEL requires an extension of the existing theory to many, inequivalent nuclear spins and to arbitrary, i.e. high electron and nuclear spin polarization. In this paper both extensions are presented. The theory is applied to the system naphthalene doped with pentacene, where the proton spins are polarized using the photo-excited triplet states of the pentacene molecules and found to show excellent agreement with the experimentally observed evolution of the polarization transfer during the locking pulse.  相似文献   

2.
Dynamic nuclear polarization (DNP) effects in aqueous solutions of stable 4-hydroxy-2,2,6,6-tetramethylpiperidine-1-oxyl (TEMPOL) radicals were studied in a pulsed mode of pumping the electron paramagnetic resonance (EPR) transitions. Our fast field cycling setup allowed us to perform the EPR pumping at low magnetic fields and to detect the enhanced nuclear magnetic resonance signals at 7 T with high spectral resolution. Pumping was performed at two different frequencies, 300 MHz and 1.4 GHz, corresponding to magnetic fields around 10 and 48.6 mT, respectively. For both frequencies, the DNP enhancements were close to the limiting theoretical values of ?110 (14N TEMPOL) and ?165 (15N TEMPOL). Our pulsed experiments exploit coherent motion of the electronic spins in the radio-frequency field as seen by an oscillatory component in the dependence of the DNP effect on the radio-frequency pulse duration. The DNP enhancement was studied in detail as a function of the pulse length, duty cycle, delay between the pulses, and applied power. The analysis of the results shows that pulsed DNP experiments provide an opportunity to achieve enhancements of about ?110 with relatively low applied power as compared to the standard continuous-wave DNP experiments. An adequate theoretical approach to the problem under study is suggested.  相似文献   

3.
Dynamic nuclear polarization (DNP)/solid-state nuclear magnetic resonance (NMR) spectroscopy bears great potential for the investigation of membrane-associated polypeptides which can often be produced only in small amounts and which need to be ‘diluted’ in lipid bilayer environments to adopt or maintain their functional structure. Here we present investigations using biradicals, such as TOTAPOL and bTbK, for solid-state NMR signal enhancement using DNP in the context of lipid membranes. By transferring polarization from electron to nuclear spins using microwave irradiation signal enhancement factors of up to 13 are obtained with TOTAPOL and up to 17 with bTbK. The possible reasons why these factors are below those obtained in glassy samples of bulk solvents (40–60 under similar conditions) are evaluated and discussed. In order to further ameliorate the enhancement factors the physico-chemical characteristics of TEMPOL, TOTAPOL, bTbK, and bCTbK, such as their partitioning between hydrophilic and hydrophobic solvents or their stability under different environmental conditions are presented. Finally, having provided proof-of-concept that DNP/solid-state NMR measurements can be performed with oriented membrane samples work in progress is presented on the development of a flat-coil probe for DNP/solid-state NMR experiments on oriented membranes.  相似文献   

4.
Dynamic nuclear polarization (DNP) has recently received much attention as a viable approach to enhance the sensitivity of nuclear magnetic resonance (NMR) spectroscopy and the contrast of magnetic resonance imaging (MRI), where the significantly higher electron spin polarization of stable radicals is transferred to nuclear spins. In order to apply DNP-enhanced NMR and MRI signal to biological and in vivo systems, it is crucial to obtain highly polarized solution samples at ambient temperatures. As stable radicals are employed as the source for the DNP polarization transfer, it is also crucial that the highly polarized sample lacks residual radical concentration because the polarized molecules will be introduced to a biological system that will be sensitive to the presence of radicals. We developed an agarose-based porous media that is covalently spin-labeled with stable radicals. The loading of solvent accessible radical is sufficiently high and their mobility approximates that in solution, which ensures high efficiency for Overhauser mechanism induced DNP without physically releasing any measurable radical into the solution. Under ambient conditions at 0.35 T magnetic field, we measure the DNP enhancement efficiency of (1)H signal of stagnant and continuously flowing water utilizing immobilized stable nitroxide radicals that contain two or three ESR hyperfine splitting lines and compare them to the performance of freely dissolved radicals.  相似文献   

5.
In dynamic nuclear polarisation (DNP), also called hyperpolarisation, a small amount of unpaired electron spins is added to the sample containing the nuclear spins, and the polarisation of these unpaired electron spins is transferred to the nuclear spins by means of a microwave field. Traditional DNP polarises the electron spin of stable paramagnetic centres by cooling down to low temperature and applying a strong magnetic field. Then weak continuous wave microwave fields are used to induce the polarisation transfer. Complicated cryogenic equipment and strong magnets can be avoided using short-lived photo-excited triplet states that are strongly aligned in the optical excitation process. However, a much faster transfer of the electron spin polarisation is needed and pulsed DNP methods like nuclear orientation via electron spin locking (NOVEL) and the integrated solid effect (ISE) are used.

To describe the polarisation transfer with the strong microwave fields in NOVEL and ISE, the usual perturbation methods cannot be used anymore. In the previous paper, we presented a theoretical approach to calculate the polarisation transfer in ISE. In the present paper, the theory is applied to the system naphthalene-h8 doped with pentacene-d14 yielding the photo-excited triplet states and compared with experimental results.  相似文献   


6.
A. Henstra 《Molecular physics》2014,112(13):1761-1772
In the hyperpolarisation method known as dynamic nuclear polarisation (DNP), a small amount of unpaired electron spins is added to the sample containing the nuclear spins and the polarisation of these unpaired electron spins is transferred to the nuclear spins by means of a microwave field. Traditional DNP uses weak continuous wave (CW) microwave fields, so perturbation methods can be used to calculate the polarisation transfer. A much faster transfer of the electron spin polarisation is obtained with the integrated solid effect (ISE) which uses strong pulsed microwave fields. As in nuclear orientation via electron spin locking, the polarisation transfer is coherent, similar to the coherence transfer between nuclear spins. This paper presents a theoretical approach to calculate this polarisation transfer.

ISE is successfully used for a fast polarisation transfer from short-lived photo-excited triplet states to the surrounding nuclear spins in molecular crystals. These triplet states are strongly aligned in the photo-excitation process and do not require the low temperatures and strong magnetic fields needed to polarise the electron spins in traditional DNP. In the following paper, the theory is applied to the system naphthalene-h8 doped with pentacene-d14 which provides the photo-excited triplet states, and compared with experimental results.  相似文献   


7.
Dynamic nuclear polarization (DNP) is introduced as a powerful tool for polarization enhancement in multi-dimensional Earth’s field NMR spectroscopy. Maximum polarization enhancements, relative to thermal equilibrium in the Earth’s magnetic field, are calculated theoretically and compared to the more traditional prepolarization approach for NMR sensitivity enhancement at ultra-low fields. Signal enhancement factors on the order of 3000 are demonstrated experimentally using DNP with a nitroxide free radical, TEMPO, which contains an unpaired electron which is strongly coupled to a neighboring 14N nucleus via the hyperfine interaction. A high-quality 2D 19F–1H COSY spectrum acquired in the Earth’s magnetic field with DNP enhancement is presented and compared to simulation.  相似文献   

8.
9.
We demonstrate the electrical detection of pulsed X-band electron nuclear double resonance (ENDOR) in phosphorus-doped silicon at 5 K. A pulse sequence analogous to Davies ENDOR in conventional electron spin resonance is used to measure the nuclear spin transition frequencies of the (31)P nuclear spins, where the (31)P electron spins are detected electrically via spin-dependent transitions through Si/SiO(2) interface states, thus not relying on a polarization of the electron spin system. In addition, the electrical detection of coherent nuclear spin oscillations is shown, demonstrating the feasibility to electrically read out the spin states of possible nuclear spin qubits.  相似文献   

10.
We describe a new triply tuned (e(-), (1)H, and (13)C) resonance structure operating at an electron Larmor frequency of 139.5 GHz for dynamic nuclear polarization (DNP) and electron nuclear double-resonance (ENDOR) experiments. In contrast to conventional double-resonance structures, the body of the microwave cavity simultaneously acts as a NMR coil, allowing for increased efficiency of radiofrequency irradiation while maintaining a high quality factor for microwave irradiation. The resonator design is ideal for low-gamma-nuclei ENDOR, where sensitivity is limited by the fact that electron spin relaxation times are on the order of the RF pulse lengths. The performance is demonstrated with (2)H ENDOR on a standard perdeuterated bis-diphenylene-phenyl-allyl stable radical. In DNP experiments, we show that the use of this resonator, combined with a low microwave power setup (17 mW), leads to significantly higher (1)H signal enhancement (epsilon approximately 400 +/- 50) than previously achieved at 5-T fields. The results emphasize the importance of optimizing the microwave B(1) field by improving either the quality factor of the microwave resonator or the microwave power level.  相似文献   

11.
Dynamic nuclear polarization (DNP) transfers electron spin-polarization to nuclear spins in close proximity, increasing sensitivity by two-to-three orders of magnitude. This enables nuclear magnetic resonance (NMR) experiments on samples with low concentrations of analyte. The requirement of using cryogenic temperatures in DNP-enhanced solid-state NMR (ssNMR) experiments may impair the resolution and hence limit its broad application to biological systems. In this work, we introduce a “High-Temperature DNP” approach, which aims at increasing spectral resolution by performing experiments at temperatures of around 180?K instead of?~100?K. By utilizing the extraordinary enhancements obtained on deuterated proteins, still sufficiently large DNP enhancements of 11–18 are obtained for proton and carbon, respectively. We recorded high sensitivity 2D 13C–13C spectra in?~9?min with higher resolution than at 100?K, which has similar resolution to the one obtained at room temperature for some favorable residues.  相似文献   

12.
动态核极化法(Dynamic Nuclear Polarization, DNP)是利用热平衡下的电子在磁场中的高自旋极化率转移到原子核自旋的技术,从而极大的提高原子核自旋极化率。多种动态极化靶材料已广泛的用于自旋物理散射实验。本文介绍一种简单实用,共同开发的日本山形大学DNP系统,包括超导磁场,氦4蒸发恒冷器,微波系统以及NMR核磁共振检测系统,测得中子靶材料氘带丁醇(D-butanol)中氘核的极化率在2.5T/1.3K达到+6.5%。  相似文献   

13.
Dynamic nuclear polarization has gained high popularity in recent years, due to advances in the experimental aspects of this methodology for increasing the NMR and MRI signals of relevant chemical and biological compounds. The DNP mechanism relies on the microwave (MW) irradiation induced polarization transfer from unpaired electrons to the nuclei in a sample. In this publication we present nuclear polarization enhancements of model systems in the solid state at high magnetic fields. These results were obtained by numerical calculations based on the spin density operator formalism. Here we restrict ourselves to samples with low electron concentrations, where the dipolar electron-electron interactions can be ignored. Thus the DNP enhancement of the polarizations of the nuclei close to the electrons is described by the Solid Effect mechanism. Our numerical results demonstrate the dependence of the polarization enhancement on the MW irradiation power and frequency, the hyperfine and nuclear dipole-dipole spin interactions, and the relaxation parameters of the system. The largest spin system considered in this study contains one electron and eight nuclei. In particular, we discuss the influence of the nuclear concentration and relaxation on the polarization of the core nuclei, which are coupled to an electron, and are responsible for the transfer of polarization to the bulk nuclei in the sample via spin diffusion.  相似文献   

14.
This article provides an overview of polarizing mechanisms involved in high-frequency dynamic nuclear polarization (DNP) of frozen biological samples at temperatures maintained using liquid nitrogen, compatible with contemporary magic-angle spinning (MAS) nuclear magnetic resonance (NMR). Typical DNP experiments require unpaired electrons that are usually exogenous in samples via paramagnetic doping with polarizing agents. Thus, the resulting nuclear polarization mechanism depends on the electron and nuclear spin interactions induced by the paramagnetic species. The Overhauser Effect (OE) DNP, which relies on time-dependent spin–spin interactions, is excluded from our discussion due the lack of conducting electrons in frozen aqueous solutions containing biological entities. DNP of particular interest to us relies primarily on time-independent, spin-spin interactions for significant electron–nucleus polarization transfer through mechanisms such as the Solid Effect (SE), the Cross Effect (CE) or Thermal Mixing (TM), involving one, two or multiple electron spins, respectively. Derived from monomeric radicals initially used in high-field DNP experiments, bi- or multiple-radical polarizing agents facilitate CE/TM to generate significant NMR signal enhancements in dielectric solids at low temperatures (<100 K). For example, large DNP enhancements (∼300 times at 5 T) from a biologically compatible biradical, 1-(TEMPO-4-oxy)-3-(TEMPO-4-amino)propan-2-ol (TOTAPOL), have enabled high-resolution MAS NMR in sample systems existing in submicron domains or embedded in larger biomolecular complexes. The scope of this review is focused on recently developed DNP polarizing agents for high-field applications and leads up to future developments per the CE DNP mechanism. Because DNP experiments are feasible with a solid-state microwave source when performed at <20 K, nuclear polarization using lower microwave power (<100 mW) is possible by forcing a high proportion of biradicals to fulfill the frequency matching condition of CE (two EPR frequencies separated by the NMR frequency) using the strategies involving hetero-radical moieties and/or molecular alignment. In addition, the combination of an excited triplet and a stable radical might provide alternative DNP mechanisms without the microwave requirement.  相似文献   

15.
该文介绍了一种自行设计和构建的可扩展脉冲动态核极化谱仪,可以实现核磁共振波谱与磁共振成像的功能.该仪器的新颖设计主要有:1) 采用基于PCIe 的分布式总线结构,能够极大地提高数据传输效率和通信可靠性,实现精确控制脉冲序列;2) 采用外部高速的DDR 芯片存储脉冲序列元素和FID 数据,可以极大的提高脉冲序列的执行速度,减少快速成像序列的TR 时间间隔;3) 采用时钟移相技术,可以精确产生分辨率为纳秒级别的数字脉冲.最后对该仪器的动态核极化-磁共振波谱与核磁共振成像功能进行了实验验证.  相似文献   

16.
The implementation of electron paramagnetic resonance (EPR) detection in a low-temperature dissolution dynamic nuclear polarization (DNP) setup is presented. Using a coil oriented parallel to the static magnetic field, the change of the longitudinal magnetization of free radicals is measured upon resonant irradiation of an amplitude or frequency modulated microwave (mw) field. The absorption EPR spectrum is measured if the amplitude of the mw field is modulated, whilst the first derivative of the spectrum is obtained with frequency modulation. Using a burst of pulses, it is also possible to perform pump-probe experiments such as saturation-recovery or electron-electron double resonance experiments. Furthermore, the magnetization could be monitored in a time-resolved manner during amplitude modulation, thus making it possible to record its transient as it is approaching an equilibrium value. Experimental examples are shown with frozen solutions of trityl radical and TEMPO, two commonly used radicals for dissolution DNP experiments.  相似文献   

17.
The results of a study of two types of natural-diamond crystals by dynamic nuclear polarization (DNP)-enhanced high-resolution solid-state 13C nuclear magnetic resonance (NMR) are reported. The home-built DNP magic-angle spinning (MAS) 13C NMR spectrometer operates at 54 GHz for electrons and 20.2 MHz for carbons. The power of the microwave source was about 30 W and the highest DNP enhancement factor came near to 103. It was shown that in the MAS spectra the 13C NMR linewidths of the Ib-type diamond were broader than those of IaB3-type diamond. From the hyperfine structure of the DNP enhancement as a function of frequency, four kinds of nitrogen-centred and one kind of carbon-centred free radicals could be identified in the Ib-type diamond. The hyperfine structures of the DNP enhancement curve that originated from the anisotropic hyperfine interaction between electron and nuclei could be partially averaged out by MAS. The 13C polarization time of DNP was rather long, i.e. 1500 s, and the spin—lattice relaxation time (without microwave irradiation) was about 300 s, which was somewhat shorter than anticipated. Discussions on these experimental results have been made in this report.  相似文献   

18.
Measurements of the enhancement of the proton resonance signal right after applying the radiofrequency pulse with the variable duration in the magnetic field of about 100 Gauss on the homebuilt prototype of the dynamic nuclear polarization (DNP) spectrometer at near room temperature are presented. A dependence of the DNP enhancement of the solvent protons of the solution of the pentavalent chromium complex in ethylene glycol on the pumping pulse duration and incident pumping power is given. No DNP effect on the native protons of the crude oils and natural bitumen from the Russian oilfields is observed. A miserable DNP enhancement is registered on the protons of toluene by dissolving the crude oil and bitumen samples. The perspectives of using the results and technical solutions for geological exploration, studies of the asphaltene structures and their dynamics are discussed.  相似文献   

19.
为了满足脉冲式电子顺磁共振谱仪中电子自旋-核自旋双共振模块的需要,利用直接数字合成器设计并制作了射频信号源. 该部件产生的射频脉冲具备对频率、幅度和相位快速精确调制的能力,对原子核自旋有较强操控能力.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号