首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
2.
Dynamic nuclear polarization (DNP) is used to enhance signals in NMR and MRI experiments. During these experiments microwave (MW) irradiation mediates transfer of spin polarization from unpaired electrons to their neighboring nuclei. Solid state DNP is typically applied to samples containing high concentrations (i.e. 10–40?mM) of stable radicals that are dissolved in glass forming solvents together with molecules of interest. Three DNP mechanisms can be responsible for enhancing the NMR signals: the solid effect (SE), the cross effect (CE), and thermal mixing (TM). Recently, numerical simulations were performed to describe the SE and CE mechanisms in model systems composed of several nuclei and one or two electrons. It was shown that the presence of core nuclei, close to DNP active electrons, can result in a decrease of the nuclear polarization, due to broadening of the double quantum (DQ) and zero quantum (ZQ) spectra. In this publication we consider samples with high radical concentrations, exhibiting broad inhomogeneous EPR line-shapes and slow electron cross-relaxation rates, where the TM mechanism is not the main source for the signal enhancements. In this case most of the electrons in the sample are not affected by the MW field applied at a discrete frequency. Numerical simulations are performed on spin systems composed of several electrons and nuclei in an effort to examine the role of the DNP inactive electrons. Here we show that these electrons also broaden the DQ and ZQ spectra, but that they hardly cause any loss to the DNP enhanced nuclear polarization due to their spin-lattice relaxation mechanism. Their presence can also prevent some of the polarization losses due to the core nuclei.  相似文献   

3.
在自主研制的动态核极化(Dynamic Nuclear Polarization,DNP)分子影像装置的基础上,提出了一种集DNP和电子顺磁共振(Electron Paramagnetic Resonance,EPR)于一体的多功能谱仪,并对其中的关键部件之一--微波桥进行了设计.微波桥的引入,实现了DNP微波发射机的集成化,以及在DNP谱仪基础上的EPR功能扩展.通过结构设计、电路仿真及系统测试,完成了高频谱纯度、高动态范围的微波发射机以及低噪声系数的微波检测系统的设计与制作.并通过DNP增强实验以及连续波EPR实验对微波桥的性能进行了验证.  相似文献   

4.
The results of a study of two types of natural-diamond crystals by dynamic nuclear polarization (DNP)-enhanced high-resolution solid-state 13C nuclear magnetic resonance (NMR) are reported. The home-built DNP magic-angle spinning (MAS) 13C NMR spectrometer operates at 54 GHz for electrons and 20.2 MHz for carbons. The power of the microwave source was about 30 W and the highest DNP enhancement factor came near to 103. It was shown that in the MAS spectra the 13C NMR linewidths of the Ib-type diamond were broader than those of IaB3-type diamond. From the hyperfine structure of the DNP enhancement as a function of frequency, four kinds of nitrogen-centred and one kind of carbon-centred free radicals could be identified in the Ib-type diamond. The hyperfine structures of the DNP enhancement curve that originated from the anisotropic hyperfine interaction between electron and nuclei could be partially averaged out by MAS. The 13C polarization time of DNP was rather long, i.e. 1500 s, and the spin—lattice relaxation time (without microwave irradiation) was about 300 s, which was somewhat shorter than anticipated. Discussions on these experimental results have been made in this report.  相似文献   

5.
In this communication, we report enhancements of nuclear spin polarization by dynamic nuclear polarization (DNP) in static and spinning solids at a magnetic field strength of 9T (250 GHz for g=2 electrons, 380 MHz for 1H). In these experiments, 1H enhancements of up to 170+/-50 have been observed in 1-13C-glycine dispersed in a 60:40 glycerol/water matrix at temperatures of 20K; in addition, we have observed significant enhancements in 15N spectra of unoriented pf1-bacteriophage. Finally, enhancements of approximately 17 have been obtained in two-dimensional 13C-13C chemical shift correlation spectra of the amino acid U-13C, 15N-proline during magic angle spinning (MAS), demonstrating the stability of the DNP experiment for sustained acquisition and for quantitative experiments incorporating dipolar recoupling. In all cases, we have exploited the thermal mixing DNP mechanism with the nitroxide radical 4-amino-TEMPO as the paramagnetic dopant. These are the highest frequency DNP experiments performed to date and indicate that significant signal enhancements can be realized using the thermal mixing mechanism even at elevated magnetic fields. In large measure, this is due to the high microwave power output of the 250 GHz gyrotron oscillator used in these experiments.  相似文献   

6.
A proton dynamic nuclear polarization (DNP) NMR signal enhancement (epsilon) close to thermal equilibrium, epsilon = 0.89, has been obtained at high field (B(0) = 5 T, nu(epr) = 139.5 GHz) using 15 mM trityl radical in a 40:60 water/glycerol frozen solution at 11 K. The electron-nuclear polarization transfer is performed in the nuclear rotating frame with microwave irradiation during a nuclear spin-lock pulse. The growth of the signal enhancement is governed by the rotating frame nuclear spin-lattice relaxation time (T(1rho)), which is four orders of magnitude shorter than the nuclear spin-lattice relaxation time (T(1n)). Due to the rapid polarization transfer in the nuclear rotating frame the experiment can be recycled at a rate of 1/T(1rho) and is not limited by the much slower lab frame nuclear spin-lattice relaxation rate (1/T(1n)). The increased repetition rate allowed in the nuclear rotating frame provides an effective enhancement per unit time(1/2) of epsilon(t) = 197. The nuclear rotating frame-DNP experiment does not require high microwave power; significant signal enhancements were obtained with a low-power (20 mW) Gunn diode microwave source and no microwave resonant structure. The symmetric trityl radical used as the polarization source is water-soluble and has a narrow EPR linewidth of 10 G at 139.5 GHz making it an ideal polarization source for high-field DNP/NMR studies of biological systems.  相似文献   

7.
In this communication, we report enhancements of nuclear spin polarization by dynamic nuclear polarization (DNP) in static and spinning solids at a magnetic field strength of 9 T (250 GHz for g = 2 electrons, 380 MHz for 1H). In these experiments, 1H enhancements of up to 170 ± 50 have been observed in 1-13C-glycine dispersed in a 60:40 glycerol/water matrix at temperatures of 20 K; in addition, we have observed significant enhancements in 15N spectra of unoriented pf1-bacteriophage. Finally, enhancements of ∼17 have been obtained in two-dimensional 13C–13C chemical shift correlation spectra of the amino acid U–13C, 15N-proline during magic angle spinning (MAS), demonstrating the stability of the DNP experiment for sustained acquisition and for quantitative experiments incorporating dipolar recoupling. In all cases, we have exploited the thermal mixing DNP mechanism with the nitroxide radical 4-amino-TEMPO as the paramagnetic dopant. These are the highest frequency DNP experiments performed to date and indicate that significant signal enhancements can be realized using the thermal mixing mechanism even at elevated magnetic fields. In large measure, this is due to the high microwave power output of the 250 GHz gyrotron oscillator used in these experiments.  相似文献   

8.
We describe a cryogenic sample exchange system that dramatically improves the efficiency of magic angle spinning (MAS) dynamic nuclear polarization (DNP) experiments by reducing the time required to change samples and by improving long-term instrument stability. Changing samples in conventional cryogenic MAS DNP/NMR experiments involves warming the probe to room temperature, detaching all cryogenic, RF, and microwave connections, removing the probe from the magnet, replacing the sample, and reversing all the previous steps, with the entire cycle requiring a few hours. The sample exchange system described here—which relies on an eject pipe attached to the front of the MAS stator and a vacuum jacketed dewar with a bellowed hole—circumvents these procedures. To demonstrate the excellent sensitivity, resolution, and stability achieved with this quadruple resonance sample exchange probe, we have performed high precision distance measurements on the active site of the membrane protein bacteriorhodopsin. We also include a spectrum of the tripeptide N-f-MLF-OH at 100 K which shows 30 Hz linewidths.  相似文献   

9.
10.
Overhauser dynamic nuclear polarisation (DNP) represents a potentially outstanding tool to increase the sensitivity of solution and solid state NMR experiments, as well as of magnetic resonance imaging. DNP signal enhancements are strongly linked to the spin relaxation properties of the system under investigation, which must contain a paramagnetic molecule used as DNP polariser. In turn, nuclear spin relaxation can be monitored through NMR relaxometry, which reports on the field dependence of the nuclear relaxation rates, opening a route to understand the physical processes at the origin of the Overhauser DNP in solution. The contributions of dipole–dipole and Fermi-contact interactions to paramagnetic relaxation are here described and shown to be responsible to both the relaxometry profiles and the DNP enhancements, so that the experimental access to the former can allow for predictions of the latter.  相似文献   

11.
Here, we describe the design and performance characteristics of a low temperature probe for dynamic nuclear polarization (DNP) experiments, which is compatible with demanding multiple-pulse experiments. The competing goals of a high-Q microwave cavity to achieve large DNP enhancements and a high efficiency NMR circuit for multiple-pulse control lead to inevitable engineering tradeoffs. We have designed two probes-one with a single-resonance RF circuit and a horn-mirror cavity configuration for the microwaves and a second with a double-resonance RF circuit and a double-horn cavity configuration. The advantage of the design is that the sample is in vacuum, the RF circuits are locally tuned, and the microwave resonator has a large internal volume that is compatible with the use of RF and gradient coils.  相似文献   

12.
Cross polarization can provide significant enhancements with respect to direct polarization of low-γ nuclei such as 13C. Substantial gains in sample throughput (shorter polarization times) can be achieved by exploiting shorter build-up times τDNP(1H)?<?τDNP(13C). To polarize protons rather than low-γ nuclei, nitroxide radicals with broad ESR resonances such as TEMPO are more appropriate than Trityl and similar carbon-based radicals that have narrow lines. With TEMPO as polarizing agent, the main Dynamic Nuclear Polarization (DNP) mechanism is thermal mixing (TM). Cross polarization makes it possible to attain higher polarization levels at 2.2?K than one can obtain with direct DNP of low-γ nuclei with TEMPO at 1.2?K, thus avoiding complex cryogenic technology.  相似文献   

13.
Dynamic nuclear polarization has gained high popularity in recent years, due to advances in the experimental aspects of this methodology for increasing the NMR and MRI signals of relevant chemical and biological compounds. The DNP mechanism relies on the microwave (MW) irradiation induced polarization transfer from unpaired electrons to the nuclei in a sample. In this publication we present nuclear polarization enhancements of model systems in the solid state at high magnetic fields. These results were obtained by numerical calculations based on the spin density operator formalism. Here we restrict ourselves to samples with low electron concentrations, where the dipolar electron-electron interactions can be ignored. Thus the DNP enhancement of the polarizations of the nuclei close to the electrons is described by the Solid Effect mechanism. Our numerical results demonstrate the dependence of the polarization enhancement on the MW irradiation power and frequency, the hyperfine and nuclear dipole-dipole spin interactions, and the relaxation parameters of the system. The largest spin system considered in this study contains one electron and eight nuclei. In particular, we discuss the influence of the nuclear concentration and relaxation on the polarization of the core nuclei, which are coupled to an electron, and are responsible for the transfer of polarization to the bulk nuclei in the sample via spin diffusion.  相似文献   

14.
Portable X-band system for solution state dynamic nuclear polarization   总被引:2,自引:2,他引:0  
This paper concerns instrumental approaches to obtain large dynamic nuclear polarization (DNP) enhancements in a completely portable system. We show that at fields of 0.35 T under ambient conditions and at X-band frequencies, 1H enhancements of >100-fold can be achieved using nitroxide radical systems, which is near the theoretical maximum for 1H polarization using the Overhauser effect at this field. These large enhancements were obtained using a custom built microwave transmitter and a commercial TE102 X-band resonant cavity. The custom built microwave transmitter is compact, so when combined with a permanent magnet it is readily transportable. Our commercial X-band resonator was modified to be tunable over a range of approximately 9.5-10 GHz, giving added versatility to our fixed field portable DNP system. In addition, a field adjustable Halbach permanent magnet has also been employed as another means for matching the electron spin resonance condition. Both portable setups provide large signal enhancements and with improvements in design and engineering, greater than 100-fold 1H enhancements are feasible.  相似文献   

15.
Recently a triarylmethyl-based (TAM) radical has been developed for research in biological and other aqueous systems, and in low magnetic fields, 10 mT or less, large 1H dynamic nuclear polarization (DNP) enhancements have been reported. In this paper the DNP properties of this radical have been investigated in a considerably larger field of 1.4 T, corresponding to proton and electron Larmor frequencies of 60 MHz and 40 GHz, respectively. To avoid excessive microwave heating of the sample, an existing DNP NMR probe was modified with a screening coil, wound around the sample capillary and with its axis perpendicular to the electric component of the microwave field. It was found that with this probe the temperature increase in the sample after 4 s of microwave irradiation with an incident power of 10 W was only 16°C. For the investigations, 10 mM of the TAM radical was dissolved in deionized, but not degassed, water and put into a 1-mm i.d. and 6-mm long capillary tube. At 26°C the following results were obtained: (I) The relaxivity of the radical is 0.07 (mMs)−1, in accordance with the value extrapolated from low-field results; (II) The leakage factor is 0.63, the saturation factor at maximum power is 0.85, and the coupling factor is −0.0187. It is shown that these results agree very well with an analysis where the electron–dipolar interactions are the dominant DNP mechanism, and where the relaxation transitions resulting from these interactions are governed by translational diffusion of the water molecules. Finally, the possibilities of combining DNP with magnetic resonance microscopy (MRM) are discussed. It is shown that at 26°C the overall DNP-enhanced proton polarization should become maximal in an external field of 0.3 T and become comparable to the thermal equilibrium polarization in a field of 30 T, considerably larger than the largest high-resolution magnet available to date. It is concluded that DNP MRM in this field, which corresponds to a standard microwave frequency of 9 GHz, has the potential to significantly increase the sensitivity in NMR and MRI experiments of small aqueous samples doped with the TAM radical.  相似文献   

16.
Power-dependent Overhauser dynamic nuclear polarization (DNP) enhancements and continuous-wave electron paramagnetic resonance (EPR) spectra of nitroxide radicals were measured in the magnetic field of a mobile Halbach-array permanent magnet and compared with results from a commercially available electromagnet. DNP saturation factors for varying microwave power were obtained from both measurement series and used to investigate how the increased magnetic field inhomogeneity present in the Halbach magnet affects the saturation efficiency. An EPR detection system was designed to allow continuous-wave EPR measurements at microwave power up to 20?W. Our results show that despite the lower magnetic field homogeneity, a Halbach-array magnet can be used for EPR and DNP-enhanced nuclear magnetic resonance of high quality providing almost the same performance as a more homogeneous electromagnet.  相似文献   

17.
动态核极化法(Dynamic Nuclear Polarization, DNP)是利用热平衡下的电子在磁场中的高自旋极化率转移到原子核自旋的技术,从而极大的提高原子核自旋极化率。多种动态极化靶材料已广泛的用于自旋物理散射实验。本文介绍一种简单实用,共同开发的日本山形大学DNP系统,包括超导磁场,氦4蒸发恒冷器,微波系统以及NMR核磁共振检测系统,测得中子靶材料氘带丁醇(D-butanol)中氘核的极化率在2.5T/1.3K达到+6.5%。  相似文献   

18.
We present a calculation of the microwave field distribution in a magic angle spinning (MAS) probe utilized in dynamic nuclear polarization (DNP) experiments. The microwave magnetic field (B(1S)) profile was obtained from simulations performed with the High Frequency Structure Simulator (HFSS) software suite, using a model that includes the launching antenna, the outer Kel-F stator housing coated with Ag, the RF coil, and the 4mm diameter sapphire rotor containing the sample. The predicted average B(1S) field is 13μT/W(1/2), where S denotes the electron spin. For a routinely achievable input power of 5W the corresponding value is γ(S)B(1S)=0.84MHz. The calculations provide insights into the coupling of the microwave power to the sample, including reflections from the RF coil and diffraction of the power transmitted through the coil. The variation of enhancement with rotor wall thickness was also successfully simulated. A second, simplified calculation was performed using a single pass model based on Gaussian beam propagation and Fresnel diffraction. This model provided additional physical insight and was in good agreement with the full HFSS simulation. These calculations indicate approaches to increasing the coupling of the microwave power to the sample, including the use of a converging lens and fine adjustment of the spacing of the windings of the RF coil. The present results should prove useful in optimizing the coupling of microwave power to the sample in future DNP experiments. Finally, the results of the simulation were used to predict the cross effect DNP enhancement (?) vs. ω(1S)/(2π) for a sample of (13)C-urea dissolved in a 60:40 glycerol/water mixture containing the polarizing agent TOTAPOL; very good agreement was obtained between theory and experiment.  相似文献   

19.
Dynamic nuclear polarization (DNP) is introduced as a powerful tool for polarization enhancement in multi-dimensional Earth’s field NMR spectroscopy. Maximum polarization enhancements, relative to thermal equilibrium in the Earth’s magnetic field, are calculated theoretically and compared to the more traditional prepolarization approach for NMR sensitivity enhancement at ultra-low fields. Signal enhancement factors on the order of 3000 are demonstrated experimentally using DNP with a nitroxide free radical, TEMPO, which contains an unpaired electron which is strongly coupled to a neighboring 14N nucleus via the hyperfine interaction. A high-quality 2D 19F–1H COSY spectrum acquired in the Earth’s magnetic field with DNP enhancement is presented and compared to simulation.  相似文献   

20.
Recently a triarylmethyl-based (TAM) radical has been developed for research in biological and other aqueous systems, and in low magnetic fields, 10 mT or less, large (1)H dynamic nuclear polarization (DNP) enhancements have been reported. In this paper the DNP properties of this radical have been investigated in a considerably larger field of 1.4 T, corresponding to proton and electron Larmor frequencies of 60 MHz and 40 GHz, respectively. To avoid excessive microwave heating of the sample, an existing DNP NMR probe was modified with a screening coil, wound around the sample capillary and with its axis perpendicular to the electric component of the microwave field. It was found that with this probe the temperature increase in the sample after 4 s of microwave irradiation with an incident power of 10 W was only 16 degrees C. For the investigations, 10 mM of the TAM radical was dissolved in deionized, but not degassed, water and put into a 1-mm i.d. and 6-mm long capillary tube. At 26 degrees C the following results were obtained: (I) The relaxivity of the radical is 0.07 (mMs)(-1), in accordance with the value extrapolated from low-field results; (II) The leakage factor is 0.63, the saturation factor at maximum power is 0.85, and the coupling factor is -0.0187. It is shown that these results agree very well with an analysis where the electron-dipolar interactions are the dominant DNP mechanism, and where the relaxation transitions resulting from these interactions are governed by translational diffusion of the water molecules. Finally, the possibilities of combining DNP with magnetic resonance microscopy (MRM) are discussed. It is shown that at 26 degrees C the overall DNP-enhanced proton polarization should become maximal in an external field of 0.3 T and become comparable to the thermal equilibrium polarization in a field of 30 T, considerably larger than the largest high-resolution magnet available to date. It is concluded that DNP MRM in this field, which corresponds to a standard microwave frequency of 9 GHz, has the potential to significantly increase the sensitivity in NMR and MRI experiments of small aqueous samples doped with the TAM radical.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号