首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 703 毫秒
1.
This paper presents the results of a numerical investigation of the heat transfer by natural convection during the melting of a phase change material (PCM, n-eicosane with melting point of 36 °C) contained in a rectangular enclosure. This latest is heated by three discrete protruding heat sources (simulating electronic components) placed on one of its vertical walls. The power generated by heat sources is dissipated in PCM. The advantage of using this cooling scheme is that the PCMs are able to absorb high amount of heat generated by the heat sources, without acting the fan during the charging process (melting of the PCM). The thermal behavior and thermal performance of the proposed PCM based-heat sink are numerically investigated by developing a mathematical model based on the mass, momentum and energy conservation equations. The obtained numerical results show the impact of various key parameters on the cooling capacity of the PCM-based heat sink. Correlations encompassing a wide range of parameters were developed in terms of the dimensionless secured operating time (time required by one of the electronic components before reaching its critical temperature, Tcr ∼ 75 °C) and the corresponding liquid fraction, using the asymptotic computational fluid dynamics (ACFD) technique.  相似文献   

2.
In order to explore the capability of a solid–liquid phase change material (PCM) for cooling electronic or heat storage applications, melting of a PCM in a vertical rectangular enclosure was studied. Three protruding generating heat sources are attached on one of the vertical walls of the enclosure, and generating heat at a constant and uniform volumetric rate. The horizontal walls are adiabatic. The power generated in heat sources is dissipated in PCM (n-eicosane with the melting temperature, Tm = 36 °C) that filled the rectangular enclosure. The advantage of using PCM is that it is able to absorb high amount of heat generated by heat sources due to its relatively high energy density. To investigate the thermal behaviour and thermal performance of the proposed system, a mathematical model based on the mass, momentum and energy conservation equations was developed. The governing equations are next discretised using a control volume approach in a staggered mesh and a pressure correction equation method is employed for the pressure–velocity coupling. The PCM energy equation is solved using the enthalpy method. The solid regions (wall and heat sources) are treated as fluid regions with infinite viscosity and the thermal coupling between solid and fluid regions is taken into account using the harmonic mean of the thermal conductivity method. The dimensionless independent parameters that govern the thermal behaviour of the system were next identified. After validating the proposed mathematical model against experimental data, a numerical investigation was next conducted in order to examine the thermal behaviour of the system by analyzing the flow structure and the heat transfer during the melting process, for a given values of governing parameters.  相似文献   

3.
This work presents a numerical study of a latent heat storage unit (LHSU) consisting of a shell-and-tube. The shell space is filled with two phase change materials (PCMs), P116 and n-octadecane, with different melting temperatures (50 °C and 27.7 °C, respectively). A heat transfer fluid (HTF: water) flows by forced convection through the inner tube, and transfers the heat to PCMs. In order to compare the thermal performances of the latent heat storage unit using two phase change materials (LHSU2) and a single PCM (LHSU1), a mathematical model based on the conservation energy equations was developed and validated with experimental data. Several numerical investigations were conducted in order to examine the impact of the key parameters: the HTF inlet temperature (ranges from 50 to 60 °C), the mass flow rate of the HTF and the proportion mass of PCMs, on the thermal performances of the latent heat storage units using two PCMs and a single PCM, during charging process (melting). This parametric study provides guidelines for system thermal performance and design optimization.  相似文献   

4.
Melting flow and heat transfer of electrically conductive phase change materials subjecting to a non-uniform magnetic field are addressed in a square enclosure. The top and bottom walls of the cavity are adiabatic, and the sidewalls are isothermal at different temperatures. The temperature of the hot wall is higher than the fusion temperature of PCM (Tf), and the cold wall is at the fusion temperature or lower. At the initial time, the cavity is filled with a solid saturated PCM. In the vicinity to the hot wall, there is an external line-source magnet, inducing a magnetic field. The location of the magnetic source (Y0) can be changed along the hot wall. The cavity domain is divided into two parts of the liquid domain and the solid domain. The moving grid method is utilized to track the phase change interface at the exact fusion temperature of Tf. The governing equations for continuity, flow and heat transfer associated with the Arbitrary Lagrangian–Eulerian (ALE) moving mesh technique are solved using the finite element method. The results are investigated for the melting behavior of PCM by the study of Hartmann number (0 ≤ Ha ≤ 50) and the location of the magnetic source (0 ≤ Y0 ≤ 1). Outcomes show that the effect of the magnetic field on the melting behavior of PCM is negligible at the initial stages of the melting (Fo < 1.15). However, after the initial stages of the melting, the effect of the presence of a magnetic field becomes significant. Moreover, the location of the magnetic source induces a feeble effect on the melting front at the initial melting stages, but its effect on the shape of the melting front increases by the increase of the non-dimensional time. The location of the magnetic source also significantly affects the streamlines patterns. Changing the position of the magnetic source from the bottom of the cavity (Y0 = 0.2) to the almost middle of the cavity (Y0 = 0.6) would decrease the required non-dimensional time of full melting from Fo = 10.4 to Fo = 9.0.  相似文献   

5.
Heat and mass transport is modeled in convective flow of a dilute binary mixture of a continuous fluid with mono-dispersed particles (PCM suspensions), in which solid–liquid phase change can take place. The model is based on the mixture continuum approach together with an approximate enthalpy formulation, in which the temporal and spatial variations of phase change fraction in the particles are considered explicitly. Derivations are given for a set of equations governing conservation of mass, momentum, species, and energy of the suspensions, as well as the evolution of phase change fraction of the dispersed particles.  相似文献   

6.
Contact melting heat transfer occurs via relative motion between the heating source and a phase change material (PCM) during melting in various applications. In this study, we investigated the physics of the close contact melting process generated by rotation and when subjected to an applied magnetic field. We transformed the physical model comprising the three-dimensional mass, momentum, and energy equations of the liquid melt layer in the cylindrical coordinate system, including the effects of the Lorentz forces and coupled with an interfacial energy jump condition, into a set of nonlinear similarity equations. Various characteristic dimensionless variables were identified, including an external force parameter σ, which defines the relationship between the external load on the PCM and the centrifugal force due to rotation, and a magnetic field parameter M. Numerical results were obtained and we systematically studied and interpreted the effects of various dimensionless variables on the contact melting and heat transfer processes during rotation, including the structures of the flow and thermal fields, melt layer thickness, and the melting and heat transfer rates. In particular, our results demonstrate that the melting and heat transfer rates increase while the liquid melt film becomes thinner as the external force parameter σ increases. By contrast, an increase in the magnetic field parameter M decreases the melting and heat transfer rates, while yielding relatively thicker melt layers.  相似文献   

7.
Wide application of polymer composite materials (PCM) in modern technology calls for detailed evaluation of their stress-strain properties in a broad temperature range. To obtain such information, we use the dynamic mechanical analysis and with the help of a reverse torsion pendulum measure the dynamic torsional rigidity of PCM bars of rectangular cross section in the temperature range up to 600 K. It is found that the temperature dependences of the dynamic rigidity of the calculated values of dynamic shear moduli are governed by the percentage and properties of the binder and fibers, the layout of fibers, the phase interaction along interfaces, etc. The principles of dynamic mechanical spectrometry are used to substantiate and analyze the parameters of anisotropy by which the behavior of a composite can be described in the temperature range including the transition of the binder from the glassy into a highly elastic state. For this purpose, the values of dynamic rigidity are measured under low-amplitude vibrations of the PCM specimens with a fiber orientation angle from 0 to 90°. It is shown that for unidirectional composites the dependence between the dynamic rigidity and the fiber orientation angle is of extreme character. The value and position of the peak depend on the type of the binder and fibers and change with temperature. It is found that the anisotropy degree of PCM is dictated by the molecular mobility and significantly changes in the temperature range of transition of the binder and reinforcement from the glassy into a highly elastic state (in the case of SVM fibers). The possibility of evaluating the anisotropy of composites with other reinforcement schemes, in particular, of orthogonally reinforced PCMs, is shown.Translated from Mekhanika Kompozitnykh Materialov, Vol. 35, No. 3, pp. 291–308, May–June, 1999.  相似文献   

8.
The Erd?s‐Rényi process begins with an empty graph on n vertices, with edges added randomly one at a time to the graph. A classical result of Erd?s and Rényi states that the Erd?s‐Rényi process undergoes a phase transition, which takes place when the number of edges reaches n/2 (we say at time 1) and a giant component emerges. Since this seminal work of Erd?s and Rényi, various random graph models have been introduced and studied. In this paper we study the Bohman‐Frieze process, a simple modification of the Erd?s‐Rényi process. The Bohman‐Frieze process also begins with an empty graph on n vertices. At each step two random edges are presented, and if the first edge would join two isolated vertices, it is added to a graph; otherwise the second edge is added. We present several new results on the phase transition of the Bohman‐Frieze process. We show that it has a qualitatively similar phase transition to the Erd?s‐Rényi process in terms of the size and structure of the components near the critical point. We prove that all components at time tc ? ? (that is, when the number of edges are (tc ? ?)n/2) are trees or unicyclic components and that the largest component is of size Ω(?‐2log n). Further, at tc + ?, all components apart from the giant component are trees or unicyclic and the size of the second‐largest component is Θ(?‐2log n). Each of these results corresponds to an analogous well‐known result for the Erd?s‐Rényi process. Our proof techniques include combinatorial arguments, the differential equation method for random processes, and the singularity analysis of the moment generating function for the susceptibility, which satisfies a quasi‐linear partial differential equation. © 2012 Wiley Periodicals, Inc. Random Struct. Alg., 2013  相似文献   

9.
A quantitative comparison of Pulse Code Modulation (PCM) and Sigma–Delta (Σ Δ) quantization methods is made in the setting of finite frames. Frames allow for redundant, overcomplete signal decompositions. PCM and Σ Δ are two industry-standard quantization methods, and the setting of finite frames is appropriate for a host of modern applications. Previous results for this comparison are known for upper error bounds, where Σ Δ performs better in the setting of frames, as opposed to orthonormal bases, where PCM is optimal. We answer the following question: For which signals x is the PCM error, that is, the norm of the difference between x and its PCM approximant, less than the Σ Δ error? We prove that, typically, in the setting of frames, Σ Δ outperforms PCM, but not always.  相似文献   

10.
An interactive solution method is developed for bicriterion mathematical programming (BCMP) problems. The new method, called the dichotomous bicriterion mathematical programming (DBCMP) method, combines Tchebycheff theory and the existing paired comparison method (PCM). The DBCMP method is then compared with the PCM method based on critical path method problems with two conflicting objectives: minimizing the total crashing cost and minimizing the total project completion time. The extension of the DBCMP method to BCMP problems with multiple decision makers is also discussed.  相似文献   

11.
Jens Kruschwitz  Max J. Setzer 《PAMM》2008,8(1):10509-10510
The artificial saturation phenomenon due to freeze–thaw cycles is described by a multi–phase and multiscale model [1,2,3] formulated within the Theory of Porous Media, [4]. It represents partially saturated concrete as a mixture of 5 interacting constituents φα, namely the solid skeleton φs, the bulk water φl, the pore volume occupied by vapour φv, the ice φi and the gel water phase φp. Most relevant for the model is the distinction between two length scales and their characteristic time scales. The boundary is marked where macroscopic bulk conditions change to surface physics and chemistry. Surface physics and chemistry acting on the nano–scale affect fundamental properties of concrete and consequently the durability of concrete against freeze–thaw. At the macroscopic scale the model describes transient conditions (i.e. water–uptake, heat transport, volume dilatation of 9%, phase change of first order considering hysteresis) which are characterized by a relatively long time period to reach equilibrium in contrast to the processes modelled on the microstructure. At the microscopic scale the model represents the nanoscopic CSH–gel system consisting of solid CSH and water as a linked system of both components basing on the concept of the “Solid–Liquid Gel System” [5]. In the constribution the numerical results of the model are presented with focus on the evaluation of the process zone during the penetration of the melting front into the matrix. (© 2008 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

12.
A Galerkin finite element method, together with the boundary conformal mapping technique, is used to investigate the change of melWcrystal interface under low gravity during the growth of LEAF system. Results have shown that strong convection can cause a deeply concave interface toward the crystal, and significantly increase radial thermal gradients near the interface. The flow intensity and the change of the gravity have a linear relationship under low gravity (g o u = 10−2-10−6). At smallMa number, the maximum acceleration for keeping a planar growth interface is gmax = 1 × 10−3 g under our given conditions. In addition, the growth velocity may have some influence on the growth interface shape even atpg gravity level, indicating that the growth velocity cannot be too fast even when convection is very weak.  相似文献   

13.
14.
A Pairwise Comparison Matrix (PCM) has been used to compute for relative priorities of elements and are integral components in widely applied decision making tools: the Analytic Hierarchy Process (AHP) and its generalized form, the Analytic Network Process (ANP). However, PCMs suffer from several issues limiting their applications to large-scale decision problems. These limitations can be attributed to the curse of dimensionality, that is, a large number of pairwise comparisons need to be elicited from a decision maker. This issue results to inconsistent preferences due to the limited cognitive powers of decision makers. To address these limitations, this research proposes a PCM decomposition methodology that reduces the elicited pairwise comparisons. A binary integer program is proposed to intelligently decompose a PCM into several smaller subsets using interdependence scores among elements. Since the subsets are disjoint, the most independent pivot element is identified to connect all subsets to derive the global weights of the elements from the original PCM. As a result, the number of pairwise comparison is reduced and consistency is of the comparisons is improved. The proposed decomposition methodology is applied to both AHP and ANP to demonstrate its advantages.  相似文献   

15.
16.
Efficient sequential quadratic programming (SQP) implementations are presented for equality-constrained, discrete-time, optimal control problems. The algorithm developed calculates the search direction for the equality-based variant of SQP and is applicable to problems with either fixed or free final time. Problem solutions are obtained by solving iteratively a series of constrained quadratic programs. The number of mathematical operations required for each iteration is proportional to the number of discrete times N. This is contrasted by conventional methods in which this number is proportional to N 3. The algorithm results in quadratic convergence of the iterates under the same conditions as those for SQP and simplifies to an existing dynamic programming approach when there are no constraints and the final time is fixed. A simple test problem and two application problems are presented. The application examples include a satellite dynamics problem and a set of brachistochrone problems involving viscous friction.  相似文献   

17.
Convergence results are presented for the immersed boundary (IB) method applied to a model Stokes problem. As a discretization method, we use the finite element method. First, the immersed force field is approximated using a regularized delta function. Its error in the W?1, p norm is examined for 1 ≤ p < n/(n ? 1), with n representing the space dimension. Subsequently, we consider IB discretization of the Stokes problem and examine the regularization and discretization errors separately. Consequently, error estimate of order h1 ? α in the W1, 1 × L1 norm for the velocity and pressure is derived, where α is an arbitrary small positive number. The validity of those theoretical results is confirmed from numerical examples.  相似文献   

18.
The continued fractions studied by Tasoev are not widely known although their characteristics are very similar to those of Hurwitz continued fractions. Recently, the author found several general forms of Tasoev continued fractions, and by applying this method he also obtained some more general forms of Hurwitz continued fractions belonging to so called tanh-type and tan-type. In this paper, we constitute a new class of general forms of Hurwitz continued fractions of e-type. The known continued fraction expansions of e1/a (a 1), ae1/a and (1/a)e1/a are included as special cases. The corresponding Tasoev continued fractions are also derived.  相似文献   

19.
The absorption spectrum of Co2+ doped NH4Cl has been studied from the room temperature to the liquid nitrogen temperature. A sudden change in the spectrum is observed between 243° K and 233° K which is attributed to the phase transition in the crystal. From the observed spectrum it is suggested that Co2+ goes in interstitially as well as substitutionally. Both the types of centers exist at room temperature, but with decrease in temperature substitutional ions migrate to interstitial sites, the process being stimulated at the phase transformation point so that the 77° K spectrum seems to be mostly due to the interstitial centers. The 77° K spectrum is analyzed in the approximation of octahedral symmetry for interstitial ions and the band positions are fitted fairly well with B = 870 cm.?1 Dq = 850 cm.?1 and C = 4·4 B. A blue shift of about 100 cm.?1 is observed for4T1 (P) band at the phase transition which is attributed to the increase in Dq value with the anomalous lattice contraction at the phase transition. The decrease in the lattice parameter calculated from this blue shift is around 0·4% which is in good agreement with the results of X-ray measurements. Two possible models for the interstitial complex are examined and the one with fourfold chlorine coordination associated with two neutral water molecules at the first neighbour (NH4)+ site lying along < 100> direction is suggested to be more probable.  相似文献   

20.
The continued fractions studied by Tasoev are not widely known although their characteristics are very similar to those of Hurwitz continued fractions. Recently, the author found several general forms of Tasoev continued fractions, and by applying this method he also obtained some more general forms of Hurwitz continued fractions belonging to so called tanh-type and tan-type. In this paper, we constitute a new class of general forms of Hurwitz continued fractions of e-type. The known continued fraction expansions of e1/a (a 1), ae1/a and (1/a)e1/a are included as special cases. The corresponding Tasoev continued fractions are also derived.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号