首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 283 毫秒
1.
2.
A creep model of a composite with a creeping matrix and initially continuous elastic brittle fibers is developed. The model accounts for the fiber fragmentation in the stage of unsteady creep of the composite, which ends with a steady-state creep, where a minimum possible average length of the fiber is achieved. The model makes it possible to analyze the creep rate of the composite in relation to such parameters of its structure as the statistic characteristics of the fiber strength, the creep characteristics of the matrix, and the strength of the fiber-matrix interface, the latter being of fundamental importance. A comparison between the calculation results and the experimental ones obtained on composites with a Ni-matrix and monocrystalline and eutectic oxide fibers as well as on sapphire fiber/TiAl-matrix composites shows that the model is applicable to the computer simulation of the creep behavior of heat-resistant composites and to the optimization of the structure of such composites. By combining the experimental data with calculation results, it is possible to evaluate the heat resistance of composites and the potential of oxide-fiber/Ni-matrix composites. The composite specimens obtained and tested to date reveal their high creep resistance up to a temperature of 1150°C. The maximum operating temperature of the composites can be considerably raised by strengthening the fiber-matrix interface.  相似文献   

3.
A three-dimensional theory of elastomeric composites with elastomeric matrices reinforced by systems of fibers is presented. The theory is based on a structural approach in which the matrix and the reinforcement of the composite are considered separately without reduction to a medium having continuously changing characteristics. The approach is based on the idea of a vector field of macroscopic displacements given by the positions of the axial lines of the fibers in the curret (deformed) configuration of the composite. The vector field determines the current macroscopic configuration, the tensor fields of the measures of macroscopic strain, and the field of the macroscopic stress tensor in the composite. The displacement, strain, and stress fields in the elastomeric matrix and the fibers of the reinforcing systems are regarded as derivatives of the field of macroscopic displacements of the medium. Relations are presented to describe the kinematics of the fibers in the current configuration of the composite, including the evolution of their orientation and the frequency of their planar and spatial distribution. Equations are obtained for the macroscopic motion of the fiber-reinforced matrix, and the dynamic variational principle that governs this motion is established. The elastic macroscopic potential of the matrix is found and related to the components of the macroscopic stress tensor. The procedure to be followed in constructing the constitutive equations of the composite is described. The proposed system of equations, relations, and algorithms is closed and can be used to solve problems involving the deformation of products made of fiber-reinforced elastomers and the creation of elastomeric composite products, based on fiber systems, that possess the requisite properties.  相似文献   

4.
This paper aims to investigate the effect of microstructure parameters (such as the cross-sectional shape of fibers and fiber volume fraction) on the stress–strain behavior of unidirectional composites subjected to off-axis loadings. A micromechanical model with a periodic microstructure is used to analyze a representative volume element. The fiber is linearly elastic, but the matrix is nonlinear. The Bodner–Partom model is used to characterize the nonlinear response of the fiber-reinforced composites. The analytical results obtained show that the flow stress of composites with square fibers is higher than with circular or elliptic ones. The difference in the elastoplastic response, which is affected by the fiber shape, can be disregarded if the fiber volume fraction is smaller than 0.15. Furthermore, the effect of fiber shape on the stress–strain behavior of the composite can be ignored if the off-axis loading angle is smaller than 30°.  相似文献   

5.
The effects of orientation and shape of filler particles on the elastic properties of composites have been analyzed. The elastic constants of a composite with irregularly oriented filler particles were calculated by using the method of orientational averaging of the properties of a representative structural element. The elastic constants of the structural element were found according to a known generalized Eshelby solution for a finite concentration of ellipsoidal inclusions. The diagrams of elasticity anisotropy for a transversely isotropic structural element and an orthotropic composite with irregularly oriented inclusions are presented. A quantitative estimate for the degree of anisotropy of elastic properties of composites is suggested. Data on the influence of shape anisometry of inclusions on the anisotropy coefficient of filled composites are also reported.  相似文献   

6.
This paper summarizes the results of a series of papers on developing methods for deter-mining elastic-dissipative characteristics of polymer composite materials (PCM) and predicting the corresponding dynamical responses from structures. For a prismatic anisotropic bar which is arbitrarily oriented with respect to the axes of elastic symmetry of an orthotropic plate, a mathematical model and a method for solving the problem of damping bending-torsional vibrations are developed. The interaction between the vibration modes of a composite bar is examined. Basic provisions of an iterative method for determining elastic and dissipative characteristics of PCM are formulated. Mathematical models of damping vibrations of fibrous composite thin-walled bars and plates are developed, and a two-stage method for solving the resulting complex eigenvalue problems is put for-ward. The effect of the composition and the reinforcement structure on the eigenfrequencies and the coefficients of mechanical losses of the structures in question is discussed. Controlability of the values of resonance frequencies and the coefficients of the mechanical losses due to variation of the degree of anisotropy of fiber materials and the degree of inhomogeneity of the structure over thickness has been demonstrated. The widely used method of potential energy of eigenforms is shown as being capable of providing correct values of the coefficients of mechanical losses only up to η = 0.02–0.03, resulting in significant errors for higher dissipative characteristics of composite structures. For the method presented, examples of practical implementation in developing vibration absorptive composite structures are given.  相似文献   

7.
The orientation of fiber direction in layers and the number of layers of composites play the major role in determining the strength and stiffness. Thus, the basic design problem is to determine the optimum stacking sequence of the composite laminate. Many methods are available at present for the design optimization of structural systems. However, these methods are based on mathematical programming techniques involving the gradient search and the direct search. These methods assume that the variables are continuous. In this paper, a different search and optimization algorithm, known as a Genetic Algorithm (GA), has been successfully applied to obtain the optimum fiber orientation of multilayered shells, which considers the angle of fiber orientation as a discrete variable. The principle of GA is applied to obtain optimum layers and the orientation of fibers of stiffened shells for both the symmetric and antisymmetric orientations of fibers for dynamic analysis. Shells composed of two to nine layers without stiffeners, with one stiffener, and with two stiffeners for a single as well as different materials are analyzed and the maximum frequency for each population is computed using the FEAST-C software. Submitted to the 11th International Conference on Mechanics of Composite Materials (Riga, June 11–15, 2000). Published in Mekhanika Kompozitnykh Materialov, Vol. 36, No. 2, pp. 271–278, March–April, 2000.  相似文献   

8.
The elastic and strength characteristics of high-modulus composites with 12 different reinforcement schemes have been studied thoroughly. The effect of reinforcement schemes on change in elastic and strength characteristics of composites has been evaluated. A calculation of the elastic characteristics of high-modulus composites has been performed from the properties of the reinforcement and binder, and a comparison of the results with experimental data is given. Diagrams of deformation upon extension of the composites studied are given.All-Union Scientific-Research Institute of Aviation Materials, Moscow. Institute of Polymer Mechanics, Academy of Sciences of the Latvian SSR, Riga. Translated from Mekhanika Polimerov, No. 6, pp. 1019–1027, November–December, 1974.  相似文献   

9.
复合材料桥纤维拔出问题的动态裂纹模型   总被引:2,自引:1,他引:1  
在一无限的正交各向异性体的弹性平面上,对具有桥纤维平行自由表面的一个内部中央裂纹,进行了弹性分析.提出了复合材料桥纤维拔出的一个动态模型.由于纤维破坏是由最大拉应力支配,纤维断裂并且裂纹扩展将以自相似的方式出现.通过复变函数的方法将所讨论的问题转化为Reimann-Hilbert混合边界值问题的动态模型,呈现一简单的和容易的解.求得了正交异性体中扩展裂纹受运动的阶梯载荷、瞬时脉冲载荷作用下问题的解析解,并利用这一解,通过迭加最终求得该模型的解.  相似文献   

10.
Since the microstructure of short fiber reinforced composites is inhomogeneous, the application of micromechanical models is useful, that take into account their characteristics like the fiber orientation and the aspect ratio of fibers. Two different methods are considered in this work: A two-step approach is utilized to get approximately the upper and lower bounds of the elastic properties. Furthermore, an approximation for the elastic properties is calculated by the self-consistence method. Both methods use discretely microstructural information including the length, the diameter and the orientation of each single fiber. (© 2013 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

11.
Laminated nonthin shells made of nonlinearly elastic fiber composites are considered. The composite material is assumed to be transversely isotropic in planes perpendicular to reinforcement. The asymptotic method and the condition of material stability are applied to analyze the structure of constitutive relations. To introduce a small parameter, the high stiffness in the reinforcement direction of the fiber composite is used. This allows us to obtain simplified constitutive relations containing functions with one or two arguments instead of five as in the initial general case. Kazan State Architectural Building Academy, Tatarstan, Russia. Translated from Mekhanika Kompozitnykh Materialov, Vol. 35, No. 5, pp. 615–628, September–October, 1999.  相似文献   

12.
Conclusion An algorithm for calculating the dynamic viscoelastic characteristics of a composite reinforced with short fibers was developed and realized in the form of a computer program. An analysis was made of the dependence of the characteristics of the composite on the volume content and length of its fibers, as well as on statistical distributions of fiber length and orientation in the material. It was shown that a change in the parameters of the statistical distributions has a significant effect on both the elastic and the dissi-pative properties of the composite. It was found that ignoring the statistical fiber-length distribution might lead to overestimation of the real component of the complex modulus and underestimation of the mechanical loss tangent.Translated from Mekhanika Kompozitnykh Materialov, No. 1, pp. 13–17, January–February, 1990.  相似文献   

13.
A factorial analysis is conducted to explore the impact of five factors — aspect ratio, radius-to-thickness ratio, material anisotropy, fiber angle and integration order on the finite element accuracy, with regard to the application of 20-node isoparametric solid elements to clamped composite cylindrical shells subjected to internal pressure. The maximum radial displacement at the central cross-section is employed as the indicator of accuracy. Results from finite element methods were compared with closed-form solutions. Aspect ratio, radius-to- thickness ratio, and integration order are significant main effects as predicted for isotropic materials. Material anisotropy shows no significant main effect, while the fiber angle does have strong impact on the finite element accuracy. In addition to four influential main effects, some multiple-factor interactions are shown to have significant influences on the finite element accuracy. The analysis is limited to the linear elastic range.  相似文献   

14.
Conclusions The strength characteristics of composites based on carbon fibers having a coating of silicon carbide are in direct dependence on the coating thickness and on the porosity, which makes it possible to assume the possibility of increasing the degree of realization of the strength characteristics of fibers having a coating in a composite by increasing the degree of impregnation of the carbon cord with the binder. The latter finds confirmation also in the fact that at a small coating thickness on the carbon fiber (of the order of 5 nm) the porosity of the composite obtained is equal to the porosity of the material based on the carbon fiber without coating. Moreover, as is evident from Fig. 3c, the casing of silicon carbide does not form a continuous coatting over the whole perimeter of the cord. The presence of these prerequisites, and also the high resistance of carbon fibers having a silicon carbide coating to oxidation [9], open up wide prospects for creating new composite materials based on them.Translated from Mekhanika Kompozitnykh Materialov, No. 4, pp. 603–606, July–August, 1979.  相似文献   

15.
Models of composites with three-dimensional structure, a proposed problem solving method, and Rabotnov's creep operators were used assuming purely elastic deformation of the composite along the orientation of the fibers to determine the viscoelastic properties of composites on inclined surfaces in a three-dimensional stressed state. The formulas used in viscoelasticity theory in the elastic region of component deformation lead to results in satisfactory accord with the reported experimental elastic properties of composites with three-dimensional structure.A. A. Blagonravov Mechanical Engineering Institute, Russian Academy of Sciences, Moscow. Translated from Mekhanika Kompozitnykh Materialov, Vol. 32, No. 6, pp. 780–786, November–December, 1996.  相似文献   

16.
An incremental homogenization scheme for the prediction of elastic properties of composites is reviewed. Similar to the differential scheme, the inclusions are included step-by-step. This approach accounts for high volume fractions of inclusion of different shape and elastic properties. A numerical example for a composite consisting of a polymeric matrix, glass fibers and voids is shown. The fiber distribution is chosen equivalently to a distribution in an injection molded short-fiber reinforced composite. The volume fraction of the voids is varied. (© 2014 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

17.
A quasi-periodic model is developed for random structures of composites, when the locations of inclusions are given in terms of random deviations from nodes of an ideal periodic lattice. Solution of the stochastic boundary problem of the theory of elasticity is examined for a quasi-periodic component by the method of periodic components, which is reduced to determination of the field of deviations from the known solution for a corresponding periodic composite. The solution is presented for the tensor of effective elastic properties of a quasi-periodic composite in singular approximation of the method of periodic components in terms of familiar solutions for tensors of the effective elastic properties of composites with periodic and chaotic structures and the parameters of the quasi-periodic structure: the coefficient of periodicity and the tensor of the anisotropy of inclusion disorder. A numerical calculation is performed for the effective transversally isotropic elastic properties of unidirectional fibrous composites with different degrees of fiber disorder.Perm' State Technical University, Russia. Translated from Mekhanika Kompozitnykh Materialov, Vol. 33, No. 4, pp. 460–473, July–August, 1997.  相似文献   

18.
The elastic properties of 3D elastomeric composite materials under large deformations are considered. The investigation is based on the structural macroscopic theory of stiff and soft composites. The results of micro- and macromechanical analyses of composite materials with compressible and poorly compressible matrices are presented. The character of interaction between the fibers of various reinforcing systems in these matrices is revealed. The deformation characteristics of the composites in tension and shear are presented as functions of their orientation and loading parameters. The evolution of the configuration of a composite material with a compressible matrix during loading is traced.  相似文献   

19.
On the basis of the theory of microbuckling of lamina-reinforced composites and formula predicting the critical composite stress for microbuckling in the shear mode cs published in the literature, a FORTRAN program for study of the behavior of microbuckling of fiber reinforced composites has been developed. Some types of composite materials (reinforcement of different fibers and epoxy matrix) have been studied. Graphics and curves, accounting for the dependences of the compressive stress at failure cs from the reinforcement volume k, specimen length L, and shear modulus of resin Gr have been obtained. The comparison of the theoretical diagrams presented here and experimental and theoretical results, published in the literature shows good agreement. The basic conclusion of the work presented here is that the study could be used for other fiber reinforced composites (with different mechanical properties of matrices and fibers).Institute of Mechanics, Bulgarian Academy of Sciences, Sofia, Bulgaria. Published in Mekhanika Kompozitnykh Materialov, Vol. 32, No. 4, pp. 531–538, July–August, 1996.  相似文献   

20.
The PUR-fiber-spray molding technology is a manufacturing process which produces polyurethane-based (PUR) composites by spraying the matrix together with reinforcing fibers in a tool form or on a substrate. Thereby chopped fibers are laterally (sidewise) injected in the polyurethane-air spray cone for wetting before the entire composite is spread on the substrate, where it starts curing. To investigate and compute the fiber orientation and density distribution in the final composites manufactured by this process, a new approach simplifying the multiply coupled interaction of the three phases is presented in this paper. Hereby it is presumed that the final position and orientation of a fiber on a substrate results from its dynamics and coupled interactions with air, PUR-droplets and other fibers within the spray cone. Thus, a model of the process is built, that computes the transient behavior of the air-liquid droplets mixture by the CFD code ANSYS Fluent and its influence on the dynamics of the fibers by an extra code called FIDYST. For this multiphase problem two approaches are presented for the droplet-fiber coupling using a concept called “homogenization” of the liquid phase (droplets in the continuous phase). (© 2010 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号