首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Methylene blue (MB+) is a well-known dye in medicine and has been discussed as an easily applicable drug for the topical treatment during photodynamic therapy (PDT). The therapeutic response of MB+ was investigated in vivo by local injection of MB+ in a xenotransplanted subcutanous tumor (adeno-carcinoma, G-3) in female nude mice. MB+ in a concentration of 1% was applied both undiluted and diluted to 0.1 and 0.01% with isotonic sodium chloride. Treatment with 1% MB+ and subsequent irradiation at 662 nm with 100 J/cm2 led to complete tumor destruction in 79% of the treated animals. A decrease of the fluence rate from 100 to 50 mW/cm2 increased the phototoxic response as well as fractionated light application. Small sensitizer concentrations reduced the PDT effect significantly. It seems that the light induced reaction of MB+ could be correlated with the rapid production of reactive oxygen species. Below a threshold dose of MB+ oxidative damage of the tissue is prevented. However, above this dose, as a point of no return, MB+ acts as an extremely potent oxidant.  相似文献   

2.
The histidine-metallochelating lipid complex is one of the smallest high affinity binding units used as tools for rapid noncovalent binding of histidine tagged molecules, especially recombinant proteins. The advantage of metallochelating complex over protein-ligand complexes (e.g., streptavidine-biotin, glutathiontransferase-glutathion) consists in its very low immunogenicity, if any. This concept for the construction of surface-modified metallochelating microbubbles was proved with recombinant green fluorescent protein (rGFP) containing 6His-tag. This protein is easy to be detected by various fluorescence techniques as flow cytometry and confocal microscopy. Microbubbles (MB) composed of DPPC with various contents of metallochelating lipid DOGS-NTA-Ni were prepared by intensive shaking of the liposome suspension under the atmosphere of sulfur hexafluoride. For this purpose, the instrument 3M ESPE CapMix was used. Various techniques (static light scattering, flow cytometry, and optical microscopy) were compared and used for the measurements of the size distribution of MB. All three methods demonstrated that the prepared MB were homogeneous in their size, and the mean diameter of the MB in various batches was within the range of 2.1-2.8 μm (the size range of 1-10 μm). The presence of large MB (8-10 μm) was marginal. Counting of MB revealed that the average amount of MB prepared of 10 mg of phospholipid equaled approximately 10(9) MB/mL. Lyophilized MB were prepared with saccharose as a cryoprotectant. These MB were shown to be stable both in vitro (the estimated half-live of the MB in bovine serum at 37 °C was 3-7 min) and in vivo (mouse). The stability of the MB was affected by molar content of DOGS-NTA-Ni. DPPC-based metallochelating MB provided a clear and very contrast image of the ventricular cavity soon after the injection. Site selective and stable binding of rGFP-HisTag (as a model of His-tagged protein) onto the surface of metallochelating MB was demonstrated by confocal microscopy.  相似文献   

3.
《Analytical letters》2012,45(12):2453-2464
ABSTRACT

Methylene blue (MB) binds to the double helical DNA with a high affinity, as deduced from the absorption and fluorescence spectral data. Extensive hypochromism and red shifts in the absorption spectra were observed when MB binds to calf thymus DNA(CT DNA), which suggested the intercalation mechanism of MB into DNA bases. Upon binding to DNA, the fluorescence from MB was efficiently quenched by the DNA bases, with no shifts in the emission maximum. The large increases in the polarization upon binding to CT DNA supported the intercalation of MB into the helix. Ferrocyanide quenching studies showed that the magnitude of Ksv of the bound MB was lower than that of the free MB. The results of competitive binding studies showed that ethidium bromide could be displaced by MB from ethidium-DNA complex. The results of all above further studies also proved the intercalation of MB into DNA base stack.  相似文献   

4.
Nucleation and growth mechanism of electropolymerization of methylene blue (MB) in a basic medium and the effect of preparation potential on poly(MB) film structure were investigated by using cyclic voltammetry, potentiostatic current‐time transient, scanning tunneling microscopy (STM), atomic force microscopy (AFM), and UV‐vis. absorption spectroscopy techniques. Electropolymerization of MB has been achieved by potentiodynamic (cyclic voltammetry) and potentiostatic (constant potential) techniques. The potentiostatic current‐time transients fitted with a theoretical model and morphological studies indicate that nucleation and growth mechanism of poly(MB) starts with a progressive layer‐by‐layer nucleation and growth besides random adsorption. Nucleation and growth of poly(MB) follows a process between progressive layer‐by‐layer and 3‐D instantaneous mechanism resulting in highly‐oriented poly(MB) nanofibers with increasing poly(MB) film thickness. Cyclic voltammetry and morphological studies exhibit that poly(MB) film structure changes depending on the preparation potential. Poly(MB) films prepared at the potential values of 900 and 950 mV show a well‐ordered, smooth surface but at the potential values higher than 1000 mV, rough polymer surface arises as overoxidation takes place. UV‐vis. absorption spectra of poly(MB) film and MB monomer show three peaks. The peak at 410 nm for poly(MB) shows 100 nm blue shift when compared to the MB monomer and is attributed to poly(MB) formation on the electrode.  相似文献   

5.
Methylene blue (MB) is a phenothiazinium photosensitizer with promising applications in the photodynamic therapy (PDT) for anticancer treatment. The binding properties of MB to herring sperm DNA have been investigated by the measurements of absorption spectra, quenching experiments and the elucidation of the photobleaching processes. Remarkable hypochromic and bathochromic effects of MB in the presence of increasing amounts of DNA have been observed in the absorption spectra. The quenching of MB by the DNA bases obeys the Stern-Volmer equation and ferrocyanide quenching of MB in the absence and presence of DNA is also measured as extended experiments. Results from the above spectral measurements are all consistent with the intercalative binding mode of MB to DNA with the Kb value of 1.89 x 10(4) M(-1). The photobleaching processes of MB and its DNA complex have also been studies, which indicate that the photobleaching of MB and its DNA complex proceeds with different mechanisms and the reactive oxygen species are responsible for the self-sensitized photooxidation of MB.  相似文献   

6.
Peracetic acid was one of the most commonly used disinfectants on solid surfaces in hospitals or public places. However, peracetic acid is an environmental toxin. Therefore, safer, alternative disinfectants or disinfectant systems should be developed. Because photodynamic virus inactivation with methylene blue (MB)/light system has proven effective in blood banking, MB was selected as a photosensitizing agent, dengue virus as a model virus for enveloped RNA viruses, and an in-house fabricated narrow bandwidth light system overlapping the absorption spectrum of MB as the light source. Dengue virus was mixed with different concentrations of MB, and illuminated by the narrow bandwidth light system under different illumination distances and times. The amount of dengue virus remaining was evaluated by plaque forming assays. Results showed that the concentration of MB working solution, illumination intensity of light source, illumination distance and time were four key factors affecting efficiency of virus inactivation using the MB/narrow bandwidth light system. Dengue virus could be completely inactivated at 2.5 m in 5 min when MB >/= 1.0 microg/ml. However, when the distance reached 3.0 m, only greater concentrations of MB (2.0 microg/ml) could completely inactivate virus in a reasonably short time (20 min), and smaller concentrations of MB (1.0 microg/ml) could only completely inactivate virus using longer times (25 min). The results of this virus inactivation model indicate that our MB/narrow bandwidth light system provides a powerful, easy way to inactivate dengue viruses.  相似文献   

7.
The cytotoxic and photodynamic activities of the commercially-available biological stains methylene blue (MB), 1,9-dimethyl MB (Taylor's Blue) and a newly synthesised compound, 1-methyl MB, were measured against the murine mammary tumour cell line, EMT-6 Both 1-methyl MB and 1,9-dimethyl MB exhibited increased dark toxicity with concomitant higher phototoxicity compared to MB at a light dose of 7.2 J cm−2. While increasing the light dose as a function of the fluence rate increased the photocytotoxicity of MB, this had little effect on the methylated derivatives. In vitro chemical testing proved that successive methylation rendered the phenothiazinium chromophore both more resistant to reduction to its inactive leuco form, and also led to increased levels of singlet-oxygen production, thus providing a possible explanation for the increased toxicities of the methylated derivatives. Comparisons are made with the benzo[a]phenothiazinium photosensitizer, EtNBS.  相似文献   

8.
The removal of methylene blue (MB) in water with the superabsorbent hydrogel (SH) formed by modified gum arabic, polyacrylate, and polyacrylamide was investigated. The SH exhibited excellent performance in MB absorption. The maximum absorption capacity was 48 mg of the dye per g of SH, representing 98% of the MB removed. Experimental parameters were used as follows: pH 8, hydrogel mass 50 mg, and initial concentration of MB 50 mg L(-1). In a procedure with an individual solution of orange II, an opposite effect related to the MB was observed: the hydrogel only absorbed water, resulting in an orange II-richer solution. The orange II concentration in solution increased about 50 times (relative to the initial concentration). In another experiment using an aqueous mixture of orange II and MB, the SH absorbed the MB exclusively. Compared to the MB, the orange II is separated from water by SH selectivity-absorption through an inverse process. This effect was attributed to the formation of a ionic complex between the imine groups of MB and the ionized carboxylic groups of SH.  相似文献   

9.
马明远  李佑稷  陈伟  李雷勇 《催化学报》2010,31(10):1221-1226
 以钛酸丁酯为前驱体, 封堵的火山岩为载体, 通过超临界 CO2 辅助制备了 TiO2 外负载火山岩复合体, 并将其用于光催化降解亚甲基蓝反应, 考察了溶液 pH 值及催化剂浓度对反应性能的影响. 结果表明, TiO2 外负载火山岩复合体的光催化性能优于纯 TiO2 和 TiO2 体负载火山岩复合体. 这是由于外负载复合体对亚甲基蓝的高吸附性、小晶粒尺寸的 TiO2 颗粒以及吸附和光催化降解间的协同效应. 亚甲基蓝浓度为 1.5 mg/L, 溶液 pH 为 8, 催化剂浓度为 6.8 mg/L 时, 外负载 TiO2 火山岩复合体上亚甲基蓝降解速率最高, 且使用后的催化剂仍具有高的光催化活性.  相似文献   

10.
We report the direct electrochemical and electrocatalytic properties of myoglobin (MB) on a multi-walled carbon nanotube/ciprofloxacin (MWCNT/CF) film-modified electrode. A highly homogeneous MWCNT thin-film was prepared on an electrode surface using ciprofloxacin (CF) as a dispersing agent. MB was then electrochemically deposited onto the MWCNT/CF-modified electrode. The MB/MWCNT/CF film was characterized by scanning electron microscopy and UV-visible spectroscopy (UV-vis). UV-vis spectra confirmed that MB retained its original state on the MWCNT/CF film. Direct electrochemical properties of MB on the MWCNT/CF film were investigated by cyclic voltammetry. The formal potential and electron transfer rate constant were evaluated in pH 7.2 buffer solution as -0.327V and 300s(-1), respectively. In addition, the MB/MWCNT/CF-modified electrode showed excellent electrocatalytic properties for the reduction of hydrogen peroxide (H(2)O(2)). The MB/MWCNT/CF-modified electrode was used for the detection of H(2)O(2) at concentrations from 1×10(-6)M to 7×10(-4)M in pH 7.2 buffer solution. Overall, the MB/MWCNT/CF-modified electrode was very stable and has potential for development as a H(2)O(2) sensor.  相似文献   

11.
Huang ST  Shi Y  Li NB  Luo HQ 《The Analyst》2012,137(11):2593-2599
We report on a fast, sensitive, label-free, and general dye-sensor platform for synthetic organic dyes detection by competitive adsorption on reduced graphene oxide (rGO) against a fluorescent dye (FD). Fluorescein (Fl) as fluorescence indicator and a cationic dye methylene blue (MB) as model analyte were employed to investigate the analytical feature of this assay platform. An anionic dye sunset yellow FCF (SY) was chosen as a comparison analyte to test the generality of this strategy. Results show that rGO can bind Fl and quench the fluorescence by fluorescence resonance energy transfer (FRET), while MB can displace Fl quickly from the Fl/rGO complex by competitive adsorption, inducing the fluorescence recovery which provides a quantitative readout for MB. Besides, this design was simply based on the competitive adsorption of rGO between dye and FD, and can be generally applied to other dyes for label-free detection. The fluorescence enhancement efficiency (FEE) is proportional to the dye concentration over the range of 7.60-420.00 ng mL(-1) MB and 7.28-400.25 ng mL(-1) SY, respectively. The linear regression equations were calculated as FEE(MB) = 0.0192c(MB)- 0.3103 for MB and FEE(SY) = 0.0142 c(SY)- 0.0427 for SY, with the detection limits of 1.03 and 1.15 ng mL(-1), respectively. The MB in waste water and SY in an orange-flavored sports drink sample were assayed with satisfactory results.  相似文献   

12.
A fundamental molecular beacon (MB) consists of a special short nucleic acid strand with a fluorophore-quencher pair attached to its ends. It provides a unique framework that is susceptible to conformational transitions between a hairpin (closed) conformation and an extended (open) conformation. These two conformations are readily discernible because of their differing fluorescence emission characteristics. The broad applicability of the robust MB sensing platform has attracted widespread interest, resulting in extensive research studies ranging from theoretical and bioanalytical chemistry to molecular biology and biomedical applications. In this paper, the principles of MB design and the modes and mechanisms of MB operation are reviewed, including MB modifications based on the utilisation of a thymidine-thymidine mismatch in hybridised MB stem, aptamers, peptides and locked nucleic acid strands in an MB loop, as well as plasmonic quenchers, quantum dots and interactions with graphene and graphene oxide. Specific applications of MBs in the analysis of enzymes, DNA mutation, phosphorylation, methylation and ligation, followed by the detection of pathogens and applications in cancer and other disease diagnostics and therapeutics are also reviewed. Molecular beacon-based sensing platforms are expanding rapidly and offer a promising bioanalytical tool for inexpensive and reliable analysis for research and field diagnostics.  相似文献   

13.
The authors investigated the catalytic activity of TiO2 for methylene blue(MB) degradation under solar light.The reaction parameters such as reaction time,TiO2 content,temperature,pH,MB concentration and light irradiation were in attention.Then,the experimental data was analyzed to investigate the adsorption order and adsorption model.The results indicate that the optimum conditions for the removal of MB are a TiO2 content of 0.5 g/L,0.50 mg/L MB solution,a temperature of 30 ℃ and reaction time of 60 min.It was found that the amount of MB removal was decreased when the pH and temperature increased.This suggests that the removal process is exothermic.However,the solar light irradiation plays a vital role in enhancing the removal amount of MB.In the dark reaction,the ability of TiO2 to remove MB was increased when the pH increased.The kinetics studies confirm that the adsorption of MB is the Pseudo-second-order.And the adsorption model was fitted with the Freundlich isotherm.  相似文献   

14.
The mechanism of bacteriophage photoinactivation by methylene blue and light (MB+L) involves genomic RNA damage. In this study, two RNA viruses, Sindbis virus (SINV) and hepatitis C virus were treated by MB+L and their nucleic acids were amplified to show that RNA lesions occurred during inactivation. During MB+L inactivation, the viral load of both viruses was significantly reduced as MB+L exposure increased. The nucleic acid amplification of treated viral RNA was inhibited in a time-dependent manner and the percentage inhibition of amplification reached about 99% after 30 min of treatment. Furthermore, as compared to SINV viral infectivity detected by quantification of the 50% tissue culture infective dose (TCID(50)), the inhibition of SINV RNA amplification strongly correlated with a decrease in in vitro infectivity (R(2) > 0.94), suggesting that RNA serves as the main target during MB+L inactivation.  相似文献   

15.
We report on an easy‐to‐use, successful, and reproducible route to synthesize functionalized graphite oxide (GO) and its conversion to graphene‐like materials through chemical or thermal reduction of GO. Graphite oxide containing hydroxyl, epoxy, carbonyl, and carboxyl groups loses mainly hydroxyl and epoxy groups during reduction, whereas carboxyl species remain untouched. The interaction of functionalized graphene with fluorescent methylene blue (MB) is investigated and compared to graphite, fully oxidized GO, as well as thermally and chemically reduced GO. Optical absorption and emission spectra of the composites indicate a clear preference for MB interaction with the GO derivatives containing a large number of functional groups (GO and chemically reduced GO), whereas graphite and thermally reduced GO only incorporate a few MB molecules. These findings are consistent with thermogravimetric, X‐ray photoelectron spectroscopic, and Raman data recorded at every stage of preparation. The optical data also indicate concentration‐dependent aggregation of MB on the GO surface leading to stable MB dimers and trimers. The MB dimers are responsible for fluorescence quenching, which can be controlled by varying the pH value.  相似文献   

16.
Recently, we have developed a broadband optical waveguide (OWG) spectrometer by using commercially available glass plates of tens of micrometers in thickness as the substrate-free multimode waveguides (Qi et al. Opt. Lett. 2002, 27, 2001-2003). The spectrometer having a bandwidth from 360 to 800 nm is capable of simultaneously detecting the Soret-band absorption of heme proteins and the visible absorption of organic dyes. In this article, the spectrometer was used to in situ investigate coadsorption of methylene blue (MB) and myoglobin from the mixed aqueous solution onto bare glass. Both MB and myoglobin in the mixed solution are positively charged, which makes them not only avoid the chemical interaction between each other but also easy to adsorb to hydrophilic glass. It was found that the coadsorption of MB and myoglobin occurred just in the early stage and the glass surface was finally occupied by myoglobin. The OWG spectroscopic investigation into the respective MB and myoglobin adsorptions shows that MB adsorption is reversible to some degree but that of myoglobin is irreversible. It reveals that the electrostatic binding of myoglobin to bare glass is stronger than the case of MB. Therefore, the adsorbed MB can be substituted by myoglobin. Moreover, via the electrostatic repulsion the tightly immobilized myoglobin prevents bulk MB from occupying the empty surface sites. It is the reason MB is absent from the hydrophilic glass coated with a submonolayer of myoglobin. In the article, we explained both the strong dimerization of MB at the interface and a slow decrease with time of the Soret-band absorbance after its maximum was reached. We also estimated the myoglobin coverage based on the waveguide theory. The study shows the distinguished applicability of the broadband OWG spectroscopy for in situ, real-time monitoring of the dye-protein coadsorption to silica from the mixed solution.  相似文献   

17.
An enzyme electrode with a chemically amplified response for methylene blue (MB) was constructed from a glassy carbon electrode and a layer containing immobilized horseradish peroxidase (HRP). MB is reduced on the electrode but regenerated through the HRP-catalyzed reaction in the presence of H(2)O(2). The electroreduction/regeneration cycle for MB resulted in an amplified electrode response. The enzyme electrode was applied to the highly sensitive measurement of ds-DNA. The current for MB decreased in association with its complexation with DNA, and the current response caused by DNA was also amplified through the recycling processes. The detection limit of ds-DNA (from salmon testes) was as low as 5 ng ml(-1).  相似文献   

18.
Anionic groups (AGs) on different cellulosic fiber surfaces were investigated by methylene blue (MB) and polyelectrolyte (PE) sorption, X-ray photoelectron spectroscopy (XPS), and total attenuated reflectance infrared spectrometry (FTIR-ATR). The MB sorption isotherms fitted well the Langmuir equation that gave consistent estimations of sorption capacities. FTIR-ATR showed that MB molecules had extensive accessibility to the fiber wall pores. Estimation of surface AGs by PE sorption gave much higher values than a new method combining MB sorption and XPS measurements (MB-XPS). The surface AGs in different cellulosic fibers accounted for 1-3% of the total AG content as revealed by MB-XPS. It was suggested that PE molecules can penetrate the fiber wall and form loops or unattached segments at external fiber surfaces that disrupt the PE sorption stoichiometry. The competition of MB and PE for the anionic sites in papermaking was assessed and it was shown that MB ions have a much stronger affinity to AGs than PE molecules.  相似文献   

19.
本文通过Sonogashira偶联反应合成了一类含有苯甲酸甲酯基团的吡咯衍生物MB3PE2和MB3,其结构为典型的给体(D,吡咯)-受体(A,苯甲酸甲酯基)结构,该类结构表现为可调的荧光性质。通过系统研究它们在各个状态下的发光性质,阐明了结构与性能的关系。实验结果表明,共轭基团的加入对D-A共轭结构的化合物发光性质影响明显,且不同状态下的影响程度显著不同。MB3PE2具有π-T-型D-A结构而MB3是T-型D-A结构。它们在溶液状态下都具有明显的溶剂效应,但是其溶液态的荧光量子产率明显不同,π-T-型D-A结构的MB3PE2是T-型MB3的2.6倍。该结果对设计溶液态下高量子效率的D-A荧光化合物具有一定的指导意义。  相似文献   

20.
Resonant Raman and surface-enhanced Raman scattering (SERS) spectroscopies, complemented with scanning tunnel microscopy and electrochemical techniques, have been used to obtain information about the amount and spatial distribution of methylene blue (MB) molecules immobilized on sulfur and four ultrathin molecular alkanethiolate films self-assembled on Au(111) and rough Au electrodes. The intensity of the Raman signals allow one to estimate the amount of immobilized MB at different organic films, whereas the decrease in the SERS intensity as a function of distance for the rough Au electrodes is used to locate the average position of the MB species with respect to the Au substrate. We found that significant amounts of cationic MB species are able to diffuse into methyl-terminated thiols, but they are stopped at the outer plane of the self-assembled monolayer (SAM) by negatively charged carboxylate groups. The relative shift of C-N stretching Raman modes indicates that the binding of MB to S is different from that found for MB on thiols. Most of the molecules immobilized on methyl- and carboxylate-terminated thiols are electrochemically inactive, suggesting that strong coupling between the Au electrode and the MB molecules is needed for charge transfer. Our results are consistent with a small population of electrochemically active MB species very close to the Au surface that reach this position driven by their lipophilic (hydrophobic) character through defects at SAMs.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号