首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到15条相似文献,搜索用时 114 毫秒
1.
SiC/SiC复合材料高温力学性能研究   总被引:1,自引:0,他引:1  
以聚碳硅烷为连续SiC陶瓷基体相的先驱体,三维四向SiC纤维预制体为增强相,采用聚合物先驱体浸渍裂解工艺制备了SiC纤维增强SiC陶瓷基(SiC/SiC)复合材料,分析表征了复合材料的组成、结构和力学性能.结果表明,SiC/SiC复合材料室温弯曲强度和断裂韧性分别为400 MPa和16.5 MPa·m1/2,优异的室温力学性能可以保持到1350℃.随着温度增加,弯曲强度基本不变,1350℃时因界面层受到破坏而断裂韧性稍有下降.  相似文献   

2.
SiC纤维增强SiC陶瓷基复合材料(简称SiCf/SiC复合材料)具有低密度、高温稳定性、抗氧化性、高耐腐蚀性等特点,在航天及航空发动机热结构部件及核聚变反应堆炉第一壁结构等方面有巨大的潜在用途.目前受工艺条件制约,SiCf/SiC复合材料中用来增强的SiC纤维纯度不高,C/Si原子比大于1.3,而采用传统先驱体浸渍裂解工艺(简称PIP)制备的基体材料除了纯度不高外,还含有孔隙和缺陷,不能满足高温氧化环境中服役要求.本文通过化学气相沉积工艺(CVD)在SiCf/SiC复合材料表面制备出一种高纯、低缺陷、耐高温、低氧扩散系数且与基体材料具有良好匹配性的SiC抗氧化梯度涂层,通过SEM分析基体与膜层的结合情况及涂层的微观形貌,通过XRD考察涂层的梯度组份及氧化前后涂层成份变化,进而探讨梯度涂层抗氧化机理.  相似文献   

3.
王涛 《人工晶体学报》2017,46(10):2062-2066
用无压浸渗法制备了高导热的SiC/Al电子封装材料.采用光学显微镜、X射线衍射仪、扫描电镜和激光热导仪对复合材料导热率、晶体结构和微观形貌进行了分析,研究了SiC颗粒大小、形状、体积分数、基体中Mg的含量和预氧化等参数对SiC/Al复合材料的导热率的影响.结果表明,选择适当的原料参数和工艺参数可制得导热率高达172.27 W/(m·k)的SiC/Al复合材料,满足电子封装材料的要求.  相似文献   

4.
本文利用简单、高效的浆料直接发泡法制备气孔率高达96%的Al2O3/Si泡沫陶瓷,并选用简便、易行的焦炭埋烧工艺在Al2O3/Si泡沫陶瓷坯体中生长出大量SiC纳米线。通过控制烧结温度来观察分析SiC纳米线的生长形貌变化。采用扫描电子显微镜(SEM)、X射线衍射仪、BET比表面积测试仪、电子万能试验机等对泡沫陶瓷的微观结构、物相组成、比表面积、气孔率、抗压强度、热导率进行分析与表征。结果表明,1 450 ℃烧结时得到的SiC纳米线最多,纳米线在泡沫陶瓷孔壁交织缠绕。同时观察到SiC纳米线的存在改变了氧化铝泡沫陶瓷固有的脆性断裂模式,SiC纳米线可有效促进泡沫陶瓷在压缩过程中的裂纹偏转。本实验制备了一种新型的纳米线缠绕在孔壁上的三维网络结构的泡沫陶瓷,为在泡沫陶瓷内部原位生长SiC纳米线提供了新的方法,更好地拓展了泡沫陶瓷在环境过滤、催化剂载体等领域中的应用。  相似文献   

5.
采用溶胶凝胶法在三维碳纤维预制体(3D-Cf)表面形成Al2O3-SiO2-TiO2涂层,而后采用先驱体浸渍裂解工艺(PIP)制备了3D-Cf/SiC复合材料,通过SEM、XRD等分析测试手段以及三点弯曲等试验方法,研究了碳纤维的界面对复合材料的微观结构、力学性能的影响.结果表明,Al2O3-SiO2-TiO2涂覆处理后的碳纤维的强度约为原始碳纤维的96.8;,涂层碳纤维在复合材料断裂过程中起到了较好的增韧作用,涂层处理后的3D-Cf/SiC复合材料的抗弯强度达303 MPa,断裂韧度达6.5 MPa/m1/2.  相似文献   

6.
C/C复合材料因低密度、耐高温等特性在航空航天材料方面具有很广泛的应用,通过改性的方法提高该类材料的电磁波吸收性能有望拓宽其应用领域。本文以酚醛树脂、Si和SiO2粉体,以及催化剂二茂铁为原料,采用先驱体浸渍裂解法制备C/C复合材料,然后通过化学气相反应法在C/C复合材料中生成SiC纳米线(SiCnw),制备出SiCnw改性C/C复合材料(SiCnw/C/C)。研究了C/C和SiCnw/C/C复合材料的结构与性能,探讨了SiCnw含量对C/C复合材料电磁波吸收性能的影响。结果表明,通过本方法可在C/C复合材料中成功引入具有核壳结构的SiCnw,并且随着SiCnw含量增加,C/C复合材料的电磁波吸收性能显著提升。当SiCnw含量为15.4%(质量分数)时,SiCnw/C/C复合材料在厚度为2.07 mm处的最小反射损耗值为-38.02 dB,明显低于同类其他材料,表现出优...  相似文献   

7.
王婷  李勇  孙加林 《人工晶体学报》2014,43(9):2198-2204
以碳化硅、多晶硅废料、金属硅粉为原料,纸浆废液为结合剂,采用反应烧结工艺制备SiC/Si3N4复相结合SiC耐火材料.运用热力学分析了利用多晶硅废料代替部分工业金属硅粉和碳化硅细粉制备SiC/Si3N4复相结合SiC耐火材料的理论可行性.系统地分析了单质硅氮化机理,提出Si首先与N2中的微量氧反应形成气态SiO,至体系氧分压降至P(02)/pθ<1 × 10-18.9,Si直接氮化.研究了多晶硅废料对材料物相组成和微观结构的影响.结果表明:利用多晶硅废料制备的SiC/Si3 N4复相结合SiC耐火材料性能优异;多晶硅废料的添加使反应生成的结合相由原先单一的Si3 N4变为Si3 N4和β-Sic,两结合相发挥各自的性能优势;多晶硅废料中的硅粉粒径小,活性大,与工业金属硅粉共存时能发生逐级氮化作用,增加了纤维状Si3N4含量,优化了材料结构.  相似文献   

8.
鉴于中空和表面多级结构有助于提升超级电容器电极材料电化学储能性能,以正硅酸四乙酯(TEOS)为硅源,以PVP为助纺剂,运用静电纺丝结合碳热还原技术制备出中空SiC纤维,并采用渗硅技术在SiC纤维表面构筑出球形纳米颗粒的多级结构.研究表明,采用静电纺丝结合碳热还原可以得到具有中空结构、连续性好且结晶程度较高的β-SiC纤维,其比电容为22 F/g.采用渗硅工艺可在β-SiC纤维表面生长球形颗粒多级结构,提升其电化学性能,使其具有较大比电容,为54 F/g.  相似文献   

9.
研究采用不同成型压力制备不同体积分数的SiC纳米纤维预制体,并通过前驱体浸渍裂解和反应熔渗联用工艺制备了SiC纳米纤维增韧SiC陶瓷基复合材料。研究了成型压力对SiC陶瓷基复合材料结构和性能的影响。结果表明,通过模压成型可实现高体积分数的SiC纳米纤维预制体的制备。当成型压力为40 MPa时,预制体SiC纳米纤维体积分数高达22.13%,但过高的成型压力也会导致SiC纳米纤维断裂。相较于单一前驱体浸渍裂解工艺,采用前驱体浸渍裂解和反应熔渗联用工艺制备的复合材料孔隙率显著降低,材料平均孔隙率从14.19%降至1.43%。当成型压力为30 MPa时,复合材料中游离硅含量低且SiC纳米纤维断裂少,材料抗弯强度和断裂韧性分别达到最大值178 MPa和21.6 MPa·m1/2。  相似文献   

10.
以紧密堆积的三级配SiC颗粒(粒径为325 μm、212 μm、80 μm,质量比为17∶7∶1)为基础配方,将Owt;、1wt;、2wt;、3wt;和4wt;且粒径为5μm的SiC微粉添加到SiC耐磨材料中,经1600℃保温3h烧制,研究了SiC微粉添加量对SiC耐磨材料结构和性能的影响.结果表明:SiC微粉可促进SiC耐磨材料的烧结致密化,并改善其力学性能,当其添加量为3wt;时,试样的综合性能较优,其体积密度和显气孔率分别为2.63 g/cm3和7.62;,硬度、抗折强度和磨损量分别为2458 HV、183 Mpa和0.26 g/min.SiC耐磨材料烧结性能和力学性能的提高可归因子SiC微粉充填在SiC颗粒间,缩短了扩散传质路径,且较小粒径的SiC微粉具有较大的表面能,烧结时易于晶粒重排,保证了烧结网络的连续性,增大了颗粒间的结合程度.  相似文献   

11.
为提高C/SiC复合材料的抗氧化性能,设计了致密的CVD-SiC涂层和多孔的熔盐法Zr-Si-C涂层相间的涂层体系.通过实验测试,建立了该涂层的生长模型,并考核了材料在1773 K的抗氧化性能.氧化结果显示,材料在氧化2h后的失重率为仅0.67;,弯曲强度保留率为99.7;,不同组成相间的结构涂层呈现出优异的抗氧化性能.  相似文献   

12.
碳化硅(SiC)以其宽带隙、高临界击穿场强、高热导率、高载流子饱和迁移率等优点,被认为是目前较具发展前景的半导体材料之一。近年来,物理气相传输(PVT)法在制备大尺寸、高质量SiC单晶衬底方面取得了重大突破,进一步推动了SiC在高压、高频、高温电子器件领域的应用。SiC粉体是PVT法生长SiC单晶的原料,其纯度会直接影响SiC单晶的杂质含量,从而影响SiC单晶的电学性质,其中生长高质量的半绝缘SiC单晶更是直接受限于SiC粉体中N元素的含量。因此,合成高纯的SiC粉体是PVT法生长高质量SiC单晶的关键。本文主要介绍了高纯SiC粉体的合成方法及研究现状,重点对气相法和固相法合成高纯SiC粉体的优缺点进行了评述,并提出了今后高纯SiC粉体合成的发展方向。  相似文献   

13.
优质晶体生长常常需要籽晶或衬底偏离常规结晶取向.为便于按任意偏向角度研磨晶片,本实验室设计并应用了晶片取向研磨夹具及相应的研磨工艺.本文介绍了该夹具和工艺的工作原理、技术要点以及对技术指标的鉴定情况.测试结果表明,研磨取向误差范围可控制在5;之内,研磨片厚度偏差小于5 μm、粗糙度Ra=0.12 μm.  相似文献   

14.
Si quantum dots (Si QDs) films were prepared by annealing amorphous SiC single layer and amorphous Si/SiC multilayers fabricated in plasma enhanced chemical vapor deposition system. The microstructures were characterized by Raman spectroscopy as well as Fourier transforms infrared spectroscopy for both samples. It was found that Si QDs with average size of 2.7 nm were formed after annealing and the electroluminescence (EL) band centered at 650 nm can be observed at room temperature. The EL intensity from the Si/SiC multilayers was obviously improved by one order of magnitude and the corresponding EL band width was reduced compared with that from SiC single layer film. The improved electroluminescence behavior can be attributed to the formation of the denser Si QDs, good size distribution and the strong confinement effect of carriers in multilayerd structures.  相似文献   

15.
An atmospheric pressure chemical vapor infiltration (CVI) process without metallic catalysts was applied for the growth of SiC nanowires within stacked SiC fiber fabrics. We investigated the effect of the concentration of a reactant gas (CH3SiCl3, MTS) on the growth behavior and microstructure of the SiC nanowires. At high concentration of MTS in a H2+MTS mixture gas, one-dimensional (1D) SiC deposits with diameters of several hundreds of nanometers were formed. Microstructures of the 1D SiC deposits exhibited a strong positional dependency throughout the thickness direction of the stacked fabric due to a depletion of the MTS gas. On the other hand, single-crystalline SiC nanowires with average diameters of 50–60 nm could be obtained at a low concentration of MTS. The SiC nanowires also exhibited a homogeneous growth both in the plane of each fabric layer and throughout the thickness of the sample.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号