首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
《Electroanalysis》2004,16(16):1330-1335
A poly(vinyl chloride) membrane sensor based on oxalic acid bis (cyclohexylidene hydrazide) as membrane carrier was prepared and investigated as a Cr(III)‐selective electrode. The electrode reveals a Nernstian behavior (slope 19.8±0.4 mV decade?1) over a wide Cr(III) ion concentration range 1.0×10?7–1.0×10?2 mol dm?3 with a very low limit of detection (i.e., down to 6.3×10?8 mol dm?3). The potentiometric response of the sensor is independent of the pH of the test solution in the pH range 1.7–6.5. The electrode possesses advantage of very fast response, relatively long lifetime and especially good selectivity to wide variety of other cations. The sensor was used as an indicator electrode, in the potentiometric titration of chromium ion and in the determination of Cr(III) in waste water and alloy samples.  相似文献   

2.
于浩  郑建斌 《中国化学》2007,25(4):503-509
A copper hexacyanoferrate modified ceramic carbon electrode (CuHCF/CCE) had been prepared by two-step sol-gel technique and characterized using electrochemical methods. The resulting modified electrode showed a pair of well-defined surface waves in the potential range of 0.40 to 1.0 V with the formal potential of 0.682 V (vs. SCE) in 0.050 mol·dm^-3 HOAc-NaOAc buffer containing 0.30 mol·dm^-3 KCl. The charge transfer coefficient (a) and charge transfer rate constant (ks) for the modified electrode were calculated. The electrocatalytic activity of this modified electrode to hydrazine was also investigated, and chronoamperometry was exploited to conveniently determine the diffusion coefficient (D) of hydrazine in solution and the catalytic rate constant (kcat). Finally, hydrazine was determined with amperometry using the resulting modified electrode. The calibration plot for hydrazine determination was linear in 3.0 × 10^-6--7.5 × 10^-4 mol·dm^-3 with the detection limit of 8.0 × 10^-7 molodm^-3. This modified electrode had some advantages over the modified film electrodes constructed by the conventional methods, such as renewable surface, good long-term stability, excellent catalytic activity and short response time to hydrazine.  相似文献   

3.
A sol‐gel electrode, based on thiacalix[4]arene as a neutral carrier, was successfully developed for the detection of VO2+ in aqueous solutions. The sol‐gel electrode exhibited linear response with Nernstian slope of 29.3±0.3 mV per decade, within the vanadyl ion concentration ranges 1.0×10?6 – 1.0×10?1 mol dm?3. The sol‐gel electrode shows detection limit of 4.9×10?7 mol dm?3. The influence of membrane composition, the pH of the test solution, and the interfering ions on the electrode performance were investigated. The electrode exhibited good selectivities for a number of alkali, alkaline earth, transition and heavy metal ions. The effect of temperature on the electrode response showed that the temperature higher than 60 °C deteriorates the electrode performance. Application of the electrode for the determination of vanadyl in spiked samples is reported.  相似文献   

4.
The kinetics of acrylamide polymerization has been investigated by employing cericammoniumnitrate-2-chloroethanol redox pair under nitrogen atmosphere at 30 ± 1°C. The rate of monomer disappearance is directly proportional to the concentration of 2-chloroethanol (1.0 × 10?2 ? 10.0 × 10?2 mol. dm?3) and is inversely proportional to the ceric ion concentration (2.5 × 10?3 ? 10.0 × 10?3 mol. dm?3) but shows square dependence to the concentration of monomer (5.0 × 10?2 ? 25.0 × 10?2 mol. dm?3). The rate of ceric ion disappearance is directly proportional to the initial concentration of ceric ion and 2-chloroethanol but independent of acrylamide concentration. The viscometric average molecular weight (M v) decreases on increasing the concentration of ceric ion and increases on increasing the concentrations of acrylamide and 2-chloroethanol. A tentative mechanism has been proposed.  相似文献   

5.
The kinetic model of induced codeposition of nickel-molybdenum alloys from ammoniun citrate solution was studied on rotating disk electrodes to predict the behavior of the electrode-position. The molybdate (MoO42-) could be firstly electro-chemically reduced to MoO2, and subsequently undergoes a chemical reduction with atomic hydrogen previously adsorbed on the inducing metal nickel to form molybdenum in alloys. The kinetic equations were derived, and the kinetic parameters were obtained from a comparison of experimental results and the kinetic equations. The electrochemical rate constants for discharge of nickel, molybdenum and water could been expressed as k1(E) = 1. 23 × 109 CNi exp( - 0.198FE/RT) mol/(dm2·s), k2(E) =3.28× 10-10 CMoexp( - 0. 208FE/ RT) mol/(dm2·s) and k3(E) = 1.27 × 10-6exp( - 0.062FE/ RT) mol/(dm2 · s), where CNi and CMo are the concentrations of the nickel ion and molybdate, respectively, and E is the applied potential vs. saturated calomel electrode (SCE). The codeposition p  相似文献   

6.
In this paper, the flow amperometric enzymatic biosensor based on polished silver solid amalgam electrode for determination of sarcosine in model sample under flow injection analysis conditions is presented. The biosensor works on principle of electrochemical detection of oxygen decrease during enzymatic reaction which is directly proportional to the concentration of sarcosine in sample. The whole preparation process takes about 3 h. The RSD of repeatability of 10 consecutive measurements is 1.6 % (csarcosine=1.0×10?4 mol dm?3). Under optimal conditions the calibration dependence was linear in the range 7.5×10?6–5.0×10?4 mol dm?3 and limit of detection was 2.0×10?6 mol dm?3.  相似文献   

7.
《Electroanalysis》2006,18(2):158-162
Optimum conditions have been found for voltammetric determination of mutagenic 5‐aminoquinoline, 6‐aminoquinoline and 3‐aminoquinoline by differential pulse voltammetry and adsorptive stripping differential pulse voltammetry on carbon paste electrode. The lowest limits of determination were found for adsorptive stripping differential pulse voltammetry in 0.1 mol dm?3 H3PO4 (5×10?7 mol dm?3 , 1×10?7 mol dm?3, and 1×10?7 mol dm?3 for 5‐aminoquinoline, 6‐aminoquinoline and 3‐aminoquinoline, respectively). The possibility to determine mixtures of 8‐aminoquinoline with 3‐aminoquinoline or 5‐aminoquinoline or 6‐aminoquinoline, and mixtures of 5‐aminoquinoline with 3‐aminoquinoline or 6‐aminoquinoline by differential pulse voltammetry was verified. Binary mixtures of 8‐aminoquinoline with 3‐aminoquinoline or 6‐aminoquinoline, and of 3‐aminoquinoline with 5‐aminoquinoline could be successfully analyzed.  相似文献   

8.
A hanging copper amalgam drop electrode (HCADE) is used for the determination of traces of iodide by cathodic stripping voltammetry. The cathodic stripping peak of copper(I) iodide from the HCADE is better defined than that of mercury(I) iodide from a hanging mercury drop electrode. Optimum conditions and interferences are reported. With a 3-min deposition time at ?0.1 V vs. SCE, the calibration plot is linear up to 2 × 10?6 mol dm?3 iodide. The detection limit for iodide with the HCADE under voltammetric conditions is 4 × 10?8 mol dm?3; this is lowered to 8 × 10?9 mol dm?3 by using the differential pulse stripping technique.  相似文献   

9.
This paper reports a simple and highly selective method for the separation, preconcentration, and determination of trace amounts of thorium and uranium in some complex samples via staircase flotation. The method is based on the initial flotation of the Th(IV)‐arsenazo III complex in the presence of U(VI) from a solution of 5 mol dm?3 HCl, then reduction of U(VI) to U(IV) and repetition of the flotation step. In both steps, the floated complex was dissolved in a 5‐mL portion of methanol and its absorbance was measured at 655 nm, spectrophotometrically. For a 30‐mL portion of the sample, Beer's law was obeyed over the concentration ranges of 3.40 × 10?7to 3.06 × 10?6 mol dm?3 for Th(IV) and3.40 × 10?7 to 3.40 × 10?6 mol dm?3 for U(IV) with the apparent molar absorptivity of 4.20 × 105 dm3 mol?1 cm?1 and 3.59 × 105 dm3 mol?1 cm?1, respectively. The RSDs (n = 7) corresponding to 1.7 × 10?6 mol dm?3 of Th(IV) and U(IV) were obtained as 1.7% and 1.87%. The detection limits (7 blanks) for both the metal ions were found to be 1.7 × 10?7 mol dm?3. The important benefit of the method is that the determinations are free from the interference of almost all cations and anions found in the complex matrixes, such as seawater samples. The proposed method was also applied to reference materials, and the determinations were shown to have good agreement with the certified values.  相似文献   

10.
Two chemosensors 4H‐1‐benzopyran‐3‐carboxaldehyde, 4‐oxo‐, 3‐(2‐phenylhydrazone), [I1] and 4H‐1‐benzopyran‐3‐carboxaldehyde, 4‐oxo‐, 3‐[2‐(2,4‐dinitrophenyl)hydrazone], [I2] with hydrazone‐NH group as binding site have been shown excellent selectivity for arsenite ion. It is confirmed by the UV‐vis titration that I2 is more selective than I1. The performance of the coated graphite electrode (CGE) was found to be better than polymeric membrane electrode (PME) in terms of linear range of 4.89×10?7–1.0×10?1 mol L?1, low detection limit of 8.31×10?8 mol L?1 and short response time. The proposed sensors were also used to determine the arsenite ion in different water samples.  相似文献   

11.
《Electroanalysis》2004,16(24):2065-2072
The interaction between Cu(II) and pectin extracted from citrus fruit was studied in KNO3 0.10 mol dm?3 at 25 °C and pH 5.5, using ion selective electrode potentiometry and voltammetry, namely differential pulse polarography and square‐wave voltammetry. Although many independent variables may affect Cu(II)‐polymer interactions such as charge density, polymer concentration and copper to polymer concentration ratio, a good fitting was observed for the model with ML and ML2 complex species, when M:L total concentration (mol dm?3) ratio varies from 0.2 to 2.7 and the ligand concentration is in the range (0.2 to 1) g dm?3, i.e., (0.4 to 2)×10?3 mol COO? dm?3. The complex parameters found in these conditions were log βCuL=3.5±0.1 and log βCuL2= 8.0±0.2. For lower total ligand and total metal ion concentrations, used in voltammetry, the interaction Cu(II)‐pectin is affected by a cooperative mode (increase of metal ion‐ligand affinity) when the total metal ion concentration increases and by an anti‐cooperative mode when the total ligand concentration increases, possibly due to different conformations of the polymer.  相似文献   

12.
A novel biosensor by electrochemically codeposited Pt nanoclusters and DNA film was constructed and applied to detection of dopamine (DA) and uric acid (UA) in the presence of high concentration ascorbic acid (AA). Scanning electron microscopy and X‐ray photoelectron spectroscopy were used for characterization. This electrode was successfully used to resolve the overlapping voltammetric response of DA, UA and AA into three well‐defined peaks with a large anodic peak difference (ΔEpa) of about 184 mV for DA and 324 mV for UA. The catalytic peak current obtained from differential pulse voltammetry was linearly dependent on the DA concentration from 1.1× 10?7 to 3.8×10?5 mol·L?1 with a detection limit of 3.6×10?8 mol·L?1 (S/N=3) and on the UA concentration from 3.0×10?7 to 5.7×10?5 mol·L?1 with a detection limit of 1.0×10?7 mol·L?1 with coexistence of 1.0×10?3 mol·L?1 AA. The modified electrode shows good sensitivity and selectivity.  相似文献   

13.
An application of the flow differential pulse voltammetry with tubular detector based on silver solid amalgam for determination of antineoplastic drug lomustine in pharmaceutical preparations is presented. The highest sensitivity was obtained in [0.10 mol dm?3 MES; 2.00 mol dm?3 NaCl; pH 6.0]:EtOH (9 : 1) with flow rate 0.50 mL min?1, and the magnitude of the modulation amplitude ?0.070 V. The calibration dependence was linear in the range 1×10?6–1 × 10?4 mol dm?3 (R2=0.999). The limit of detection was 1.5×10?7 mol dm?3. This method was successfully used for determination of lomustine in real samples of chemotherapy drug CeeNU Lomustine 40 mg.  相似文献   

14.
A plasticized PVC (polyvinyl chloride) membrane based oxalate ion selective electrode has been developed by using the condensation product of m‐aminoacetophenone and ethylenediamine. The transition metal complexes of the ligand N,N′‐bis(m‐aminoacetophenene)ethylenediamine (L) were synthesized and incorporated as ionophore for the synthesis of oxalate ion selective electrodes. Most appropriate result in terms of dynamic range, detection limit and response behavior was determined for the Ni(II) bis‐(m‐aminoacetophenone)ethylenediamine complex. The electrode demonstrated higher selectivity for oxalate ion with improved performance as compared to other carriers reported in past. The electrode shows Nernstian slope of (?28.5±0.4) mV·decade?1 with improved linear range of 1×10?1?1×10?7 mol·L?1, with a comparatively lower detection limit in the pH range of 5–10.5, giving a relatively fast response within 10 s and reasonable reproducibility. The selectivity coefficient was calculated using matched potential method and fixed interference method. The lifetime of the electrode was found to be nearly 2 months. The response mechanism and the interaction of oxalate ion with the complexes have been discussed by UV‐visible spectroscopic technique. Further the electrode was also successfully applied to determine the oxalate content in water samples.  相似文献   

15.
A poly(vinyl chloride) (PVC) membrane sensor for holmium ions was fabricated based on N‐[(Z)‐1‐(2‐thienyl)‐ methylidene]‐N‐[4‐(4‐{[(Z)‐1‐(2‐thienyl)methylidene]amino} phenoxy)phenyl] amine (TPA) as a new ion carrier, acetophenon (AP) as plasticizing solvent mediator and sodium tetraphenyl borate (NaTPB) as an anion excluder. The electrode shows a good selectivity towards Ho3+ ions respect to other inorganic cations, including alkali, alkaline earth, transition and heavy metal ions. The constructed sensor displays a Nernstian behavior (19.5±0.3 mV/decade) over the concentration range of 1.0×10−6 to 1.0×10−2 mol·L−1 with the detection limit of the electrode being 4.6×10−7 mol·L−1 and very short response time (ca. 5 s). It has a useful working pH range of 3.2–9.8 for at least 8 weeks. The electrode was successfully applied as an indicator electrode for the potentiometric titration of a Ho3+ solution with EDTA and holmium determination in some alloys. The proposed sensor accuracy was studied by the determination of Ho3+ in mixtures of three different ions.  相似文献   

16.
A novel Cr(III) ion‐selective electrode is constructed by incorporating a new aryl amide bifunctional bridging ligand, 2,2′‐bis{[(2″‐benzylaminoformyl)phenxoyl]methyl}‐diethylether (BBPMD) as a neutral carrier into the PVC matrix. The proposed electrode, with optimum membrane composition, exhibits an excellent near‐Nernstian response for Cr3+ ion ranging from 2.8 × 10?6 to 1.0 × 10?1 mol/L with a detection limit of 8.6 × 10?7 mol/L and a slope of 19.5 ± 0.2 mV/dec in pH 3.0 nitrate buffer solution at 25 °C. It has an appropriate response time, suitable reproducibility, and good selectivity towards Cr3+ ion. The operational pH range of the proposed electrode is 2.5–6.5. The response mechanism was discussed in view of UV‐vis spectroscopy and the A. C. impedance technique. The excellent analytical features of the proposed electrode could lead to its successful application as an indicator electrode in potentiometric titration of Cr3+ ion and in the direct determination of Cr3+ ion in tea leaves and coffee samples.  相似文献   

17.
A new ion selective electrode for salicylate based on N,N'-(aminoethyl)ethylenediamide bis(2-salicylideneimine) binuclear copper(Ⅱ) complex [Cu(Ⅱ)2-AEBS] as an ionophore was developed. The electrode has a linear range from 1.0 × 10^-1 to 5.0 ×10^-7 mol·L^- 1 with a near-Nemstian slope of ( - 55 ±1 ) mV/decade and a detection limit of 2.0 × 10-7 mol·L^-1 in phosphorate buffer solution of pH 5.0 at 25 ℃. It shows good selectivity for Sal^- and displays anti-Hofmeister selectivity sequence: Sal^-〉SCN^-〉 ClO4^- 〉I^-〉 NO2^- 〉Br^-〉 NO3^- 〉Cl^-〉 SO3^2- 〉 SO4^2- The proposed sensor based on binuclear copper(Ⅱ)complex has a fast response time of 5-10 s and can be used for at least 2 months without any major deviation. The response mechanism is discussed in view of the alternating current (AC) impedance technique and the UV-vis spectroscopy technique. The effect of the electrode membrane compositions and the experimental conditions were studied. The electrode has been successfully used for the determination of salicylate ion in drug pharmaceutical preparations.  相似文献   

18.
This paper presents the application of the tubular detector based on silver solid amalgam (TD‐AgSA) for electrochemical determinations of reducible inorganic (Cd2+, Zn2+) and organic (4‐nitrophenol) compounds under flow injection analysis conditions. The newly developed TD‐AgSA is simple, robust and inexpensive. The limits of detections of Zn2+, Cd2+ and 4‐nitrophenol are 1.4×10?6, 7.0×10?7, and 5.0×10?7 mol dm?3, respectively (i.e. 0.09, 0.08 and 0.07 ppm). The obtained results proved the long‐term stability of the detector (RSD of the determination of Zn2+, Cd2+, and 4‐nitrophenol were 0.8, 0.9 and 0.8 % (n=10; cZn=7.7×10?5 mol dm?3, cCd=4.5×10?5 mol dm?3 and c4‐NPh=3.6×10?5 mol dm?3), respectively and its applicability for cathodic measurements in aqueous solutions at potentials up to ?2 V.  相似文献   

19.
The polarographic behaviour of cyfluthrin (CY), an α-cynoester pyrethroid, was studied using a dropping mercury electrode and hanging mercury drop electrode in methanolic Britton–Robinson (B–R) buffer of pH 2.0–12.0 with different ionic media. The nature of the electrode process was examined, the number of electrons was evaluated, and the reduction mechanism was proposed. Quantitative determination was achieved in the concentration range of 6.0?×?10?8 to 1.15?×?10?5?mol?dm?3 using a differential pulse polarographic method with a lower detection limit of 2.4?×?10?8?mol?dm?3. The proposed method was successfully applied in the determination of CY in formulations, grains, soils, and spiked water samples.  相似文献   

20.
《Analytical letters》2012,45(7-8):807-824
Abstract

A poly(vinyl chloride) membrane ion-selective electrode for the Hyamine 1622 cation is proposed. The active substance of the electrode was the neutral carrier dibenzo-18-crown-6 and di-iso-octylphthalate was used as plasticizer. The electrode had a Nernstian behaviour between 6.0 × 10?6 and 1.6 × 10?3 mol/dm3, a pH working range of 2 – 12 and high selectivity towards inorganic cations. Among the organic cations tested, only those having surfactant properties did interface. The electrode was suitable for determining the critical micelle concentration and as end-point detector in the potentiometric titration of the cationic surfactants.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号