首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 421 毫秒
1.
The flow developing downstream of a step change from smooth to rough surface condition is studied in the light of Townsend’s wall similarity hypothesis. Previous studies seem to support the hypothesis for channel and pipe flows, but there are considerable controversies about its application to boundary layers and in particular to surface roughness formed by spanwise bars. It has been suggested that this controversy arises from insufficient separation of scales between the boundary layer thickness and the roughness length scale. An experimental investigation has therefore been undertaken where the flow evolves from a fully developed smooth wall boundary layer at high Reynolds numbers over a step in surface roughness (Re θ = 13,400 at the step). The flow is mapped through the development of the internal layer until the flow is fully developed over the rough wall. The internal layer is found to grow as δ ∼ X 0.73, and after about 15 boundary layer thicknesses at the step, the internal layer has reached the outer edge of the incoming layer. At the last rough wall measurement station, the Reynolds number has grown to Re θ ≈ 32,600 and the ratio of boundary layer to roughness length scales is δ/k ≈ 140. The outer layer differences between the smooth and the rough wall data were found to be sufficiently small to conclude that for this setup the Townsend’s wall similarity hypothesis appears to hold.  相似文献   

2.
A parallel large eddy simulation code that adopts domain decomposition method has been developed for large‐scale computation of turbulent flows around an arbitrarily shaped body. For the temporal integration of the unsteady incompressible Navier–Stokes equation, fractional 4‐step splitting algorithm is adopted, and for the modelling of small eddies in turbulent flows, the Smagorinsky model is used. For the parallelization of the code, METIS and Message Passing Interface Libraries are used, respectively, to partition the computational domain and to communicate data between processors. To validate the parallel architecture and to estimate its performance, a three‐dimensional laminar driven cavity flow inside a cubical enclosure has been solved. To validate the turbulence calculation, the turbulent channel flows at Reτ = 180 and 1050 are simulated and compared with previous results. Then, a backward facing step flow is solved and compared with a DNS result for overall code validation. Finally, the turbulent flow around MIRA model at Re = 2.6 × 106 is simulated by using approximately 6.7 million nodes. Scalability curve obtained from this simulation shows that scalable results are obtained. The calculated drag coefficient agrees better with the experimental result than those previously obtained by using two‐equation turbulence models. Copyright © 2007 John Wiley & Sons, Ltd.  相似文献   

3.
Scalar transport from a point source in flows over wavy walls   总被引:1,自引:0,他引:1  
Simultaneous measurements of the velocity and concentration field in fully developed turbulent flows over a wavy wall are described. The concentration field originates from a low-momentum plume of a passive tracer. PLIF and digital particle image velocimetry are used to make spatially resolved measurements of the structure of the scalar distribution and the velocity. The measurements are performed at three different Reynolds numbers of Re b = 5,600, Re b = 11,200 and Re b = 22,400, respectively, based on the bulk velocity u b and the total channel height 2h. The velocity field and the scalar field are investigated in a water channel with an aspect ratio of 12:1, where the bottom wall of the test section consists of a train of sinusoidal waves. The wavy wall is characterized by the amplitude to wavelength ratio α = 0.05 and the ratio β between the wave amplitude and the half channel height where β = 0.1. The scalar is released from a point source at the wave crest. For the concentration measurements, Rhodamine B is used as tracer dye. At low to moderate Reynolds number, the flow field is characterized through a recirculation zone which develops after the wave crest. The recirculation zone induces high intensities of the fluctuations of the streamwise velocity and wall-normal velocity. Furthermore, large-scale structures are apparent in the flow field. In previous investigations it has been shown that these large-scale structures meander laterally in flows over wavy bottom walls. The investigations show a strong effect of the wavy bottom wall on the scalar mixing. In the vicinity of the source, the scalar is transported by packets of fluid with a high scalar concentration. As they move downstream, these packets disintegrate into filament-like structures which are subject to strong gradients between the filaments and the surrounding fluid. The lateral scale of the turbulent plume is smaller than the lateral scale of the large-scale structures in the flow field and the plume dispersion is dominated by the structures in the flow field. Due to the lateral meandering of the large-scale structures of the flow field, also the scalar plume meanders laterally. Compared to turbulent plumes in plane channel flows, the wavy bottom wall enhances the mixing effect of the turbulent flow and the spreading rate of the scalar plume is increased.  相似文献   

4.
Experiments have been made to measure some of the near wake properties of axisymmetric bluff body flows with fixed points of separation, including the detention or residence time of fluid borne scalar entities, base pressure coefficient, wake bubble length parameter and shape parameter. Measurements were made in smooth and turbulent air flow for Reynolds number in the range 2×103<Re<4×104. The results for a given bluff body were found to be uniquely controlled by a free-stream turbulence parameter. The data for all the shapes of bluff body in the class under consideration were found to collapse into unique inter-relationships by the introduction of the face pressure coefficient as a quantitative measure of “bluffness”. This paper was originally presented at the 14th International Congress of Theoretical and Applied Mechanics, Delft (August–September, 1976).  相似文献   

5.
LES and RANS for Turbulent Flow over Arrays of Wall-Mounted Obstacles   总被引:2,自引:0,他引:2  
Large-eddy simulation (LES) has been applied to calculate the turbulent flow over staggered wall-mounted cubes and staggered random arrays of obstacles with area density 25%, at Reynolds numbers between 5 × 103 and 5 106, based on the free stream velocity and the obstacle height. Re = 5 × 103 data were intensively validated against direct numerical simulation (DNS) results at the same Re and experimental data obtained in a boundary layer developing over an identical roughness and at a rather higher Re. The results collectively confirm that Reynolds number dependency is very weak, principally because the surface drag is predominantly form drag and the turbulence production process is at scales comparable to the roughness element sizes. LES is thus able to simulate turbulent flow over the urban-like obstacles at high Re with grids that would be far too coarse for adequate computation of corresponding smooth-wall flows. Comparison between LES and steady Reynolds-averaged Navier-Stokes (RANS) results are included, emphasising that the latter are inadequate, especially within the canopy region.  相似文献   

6.
The particle image velocimetry technique was used to measure characteristics of a turbulent flow over a transitionally-rough fixed bed in an open-channel flow. These conditions are typical of flows encountered in sediment transport problems. Measurements obtained with this technique were used to investigate the distributions of velocities, turbulence intensities, Reynolds stress, and third- and fourth-order moments in a region above y + = 10. The present results are in good agreement to those previously obtained on smooth walls and provide further evidence that PIV can be applied successfully to investigate turbulence in open-channel flows over a rough bed.  相似文献   

7.
Exploratory measurements of oscillatory boundary layers were conducted over a smooth and two different rough beds spanning the laminar, transitional and turbulent flow regimes using a multi-camera 2D-PIV system in a small oscillatory-flow tunnel (Admiraal et al. in J Hydraul Res 44(4):437–450, 2006). Results show how the phase lag between bed shear stress and free-stream velocity is better defined when the integral of the momentum equation is used to estimate the bed shear stress. Observed differences in bed shear stress and phase lag between bed shear stress and free-stream velocity are highly sensitive to the definition of the bed position (y = b). The underestimation of turbulent stresses close to the wall is found to explain such differences when using the addition of Reynolds and viscous stresses to define both the bed shear stress and the phase lag. Regardless of the flow regime, in all experiments, boundary-layer thickness reached its maximum value at a phase near the flow reversal at the wall. Friction factors in smooth walls are better estimated using a theoretical equation first proposed by Batchelor (An introduction to fluid dynamics. Cambridge University Press, Cambridge, 1967) while the more recent empirical predictor of Pedocchi and Garcia (J Hydraul Res 47(4):438–444, 2009a) was found to be appropriate for estimating friction coefficients in the laminar-to-turbulent transition regime.  相似文献   

8.
This paper presents results of an experimental study investigating the mean and temporal evolution of flow within the pore space of a packed bed overlain by a free-surface flow. Data were collected by an endoscopic PIV (EPIV) technique. EPIV allows the instantaneous velocity field within the pore space to be quantified at a high spatio-temporal resolution, thus permitting investigation of the structure of turbulent subsurface flow produced by a high Reynolds number freestream flow (Re s in the range 9.8?×?103?C9.7?×?104). Evolution of coherent flow structures within the pore space is shown to be driven by jet flow, with the interaction of this jet with the pore flow generating distinct coherent flow structures. The effects of freestream water depth, Reynolds and Froude numbers are investigated.  相似文献   

9.
The adverse pressure gradient induced by a surface-mounted obstacle in a turbulent boundary layer causes the approaching flow to separate and form a dynamically rich horseshoe vortex system (HSV) in the junction of the obstacle with the wall. The Reynolds number of the flow (Re) is one of the important parameters that control the rich coherent dynamics of the vortex, which are known to give rise to low-frequency, bimodal fluctuations of the velocity field (Devenport and Simpson, J Fluid Mech 210:23–55, 1990; Paik et al., Phys Fluids 19:045107, 2007). We carry out detached eddy simulations (DES) of the flow past a circular cylinder mounted on a rectangular channel for Re = 2.0 × 104 and 3.9 × 104 (Dargahi, Exp Fluids 8:1–12, 1989) in order to systematically investigate the effect of the Reynolds number on the HSV dynamics. The computed results are compared with each other and with previous experimental and computational results for a related junction flow at a much higher Reynolds number (Re = 1.15 × 105) (Devenport and Simpson, J Fluid Mech 210:23–55, 1990; Paik et al., Phys Fluids 19:045107, 2007). The computed results reveal significant variations with Re in terms of the mean-flow quantities, turbulence statistics, and the coherent dynamics of the turbulent HSV. For Re = 2.0 × 104 the HSV system consists of a large number of necklace-type vortices that are shed periodically at higher frequencies than those observed in the Re = 3.9 × 104 case. For this latter case the number of large-scale vortical structures that comprise the instantaneous HSV system is reduced significantly and the flow dynamics becomes quasi-periodic. For both cases, we show that the instantaneous flowfields are dominated by eruptions of wall-generated vorticity associated with the growth of hairpin vortices that wrap around and disorganize the primary HSV system. The intensity and frequency of these eruptions, however, appears to diminish rapidly with decreasing Re. In the high Re case the HSV system consists of a single, highly energetic, large-scale necklace vortex that is aperiodically disorganized by the growth of the hairpin mode. Regardless of the Re, we find pockets in the junction region within which the histograms of velocity fluctuations are bimodal as has also been observed in several previous experimental studies.  相似文献   

10.
The ultra-low Reynolds number airfoil wake   总被引:1,自引:0,他引:1  
Lift force and the near wake of an NACA 0012 airfoil were measured over the angle (α) of attack of 0°–90° and the chord Reynolds number (Re c ), 5.3 × 103–5.1 × 104, with a view to understand thoroughly the near wake of the airfoil at low- to ultra-low Re c . While the lift force is measured using a load cell, the detailed flow structure is captured using laser-Doppler anemometry, particle image velocimetry, and laser-induced fluorescence flow visualization. It has been found that the stall of an airfoil, characterized by a drop in the lift force, occurs at Re c  ≥ 1.05 × 104 but is absent at Re c  = 5.3 × 103. The observation is connected to the presence of the separation bubble at high Re c but absence of the bubble at ultra-low Re c , as evidenced in our wake measurements. The near-wake characteristics are examined and discussed in detail, including the vortex formation length, wake width, spanwise vorticity, wake bubble size, wavelength of K–H vortices, Strouhal numbers, and their dependence on α and Re c .  相似文献   

11.
Calculations of two types of flows in the initial sections of channels with permeable walls are carried out on the basis of semiempirical turbulence theories during fluid injection only through the walls and during interaction of the external flow with the injected fluid. Experimental studies of the first type [1–3] show that at least within the limits of the lengths L/h<30 and L/a< 50 (2h is the distance between permeable walls of a flat channel anda is the tube radius) the velocity distributions in the laminar and turbulent flow regimes differ little and are nearly self-similar for solutions obtained in [4]. For sufficiently large Reynolds numbers, Re0>100 (Re0=v0h/ or Re0=v0 a/, where v0 is the injection velocity), and small fluid compressibility, the axial velocity component is described by the relations for ideal eddying motion: u=(/2)x× cos (y/2) in a flat channel and u=x cos (y2/2) in atube (the characteristic values for the coordinates are, respectively, h anda). Measurements indicate the existence of a segment of laminar flow; its length depends on the Reynolds number of the injection [3]. In the turbulent regime the maximum generation of turbulent energy occurs significantly farther from the wall than in parallel flow. Flows of the second type in tubes were studied in [5–7]. These studies disclosed that for Reynolds numbers of the flow at the entrance to the porous part of the tube Re=u0 a/<3.103 fluid injection with v0/u0>0.01 leads to suppression of turbu lence in the initial section of the tube. An analogous phenomenon was observed in the boundary layer with v0/u0>0.023 [8, 9]. Laminar-turbulent transition in flows with injection was explained in [10, 11] on the basis of hydrodynamic instability theory, taking into account the non-parallel character of these flows. The mechanisms for the development of turbulence and reverse transition in channels with permeable walls are not theoretically explained. Simple semiempirical turbulence theories apparently are insufficient for this purpose. In the present work results are given of calculations with two-parameter turbulence models proposed in [12, 13] for describing complex flows. Due to the sharp changes of turbulent energy along the channel length, a numerical solution of the complete system of equations of motion was carried out by the finite-difference method [14].Translated from Izvestiya Akademii Nauk SSSR, Mekhanika Zhidkosti i Gaza, No. 5, pp. 43–48, September–October, 1976.  相似文献   

12.
Large eddy simulation (LES) is carried out to investigate the turbulent boundary-layer flows over a hill-shaped model with a steep or relatively moderate slope at moderately high Reynolds numbers (Re = O(103)) defined by the hill height and the velocity at the hill height. The study focuses on the effects of surface roughness and curvature. For Sub-grid Scale (SGS) modeling of LES, both the dynamic Smagorinsky model (DSM) and the dynamic mixed model (DMM) are applied. The behavior of the separated shear layer and the vortex motion are affected by the oncoming turbulence, such that the shear layer comes close to the ground surface, or the size of a separation region becomes small because of the earlier instability of the separated shear layer. Appropriate measures are required to generate the inflow turbulence. The methods of Lund et al. (J. Comput. Phys., 140:233–258, 1998) and Nozawa and Tamura (J. Wind Eng. Ind. Aerodyn., 90:1151–1162, 2002; The 4th European and African Conference on Wind Engineering, 1–6, 2005) are employed to simulate the smooth- and rough-wall turbulent boundary layers in order to generate time-sequential data of inflow turbulence. This paper discusses the unsteady phenomena of the wake flows over the smooth and rough 2D hill-shaped obstacles and aims to clarify the roughness effects on the flow patterns and the turbulence statistics distorted by the hill. Numerical validation is conducted by comparing the simulation results with wind tunnel experiment data for the same hill shape at almost the same Re. The applicability of DSM and DMM are discussed, focusing on the recirculation region behind a steep hill.  相似文献   

13.
We consider the onset of convection in a porous medium heated from below and subjected to a horizontal mean flow. The effect of porous inertia is studied, and the transverse aspect ratio a of the medium is taken into accout. We find that the dominant modes are longitudinal rolls (L.R) if a is an integer or transverse traveling rolls (T.R) if a is below ac with ac<1. When a is not an integer with a>ac, the setting on patterns are oscillatory three-dimensional structures (3D) for a>1 or T.R for ac<a<1 provided that the Reynolds number remains below a critical value ReK*. We show that these structures are replaced by L.R if ReK>ReK*. To cite this article: A. Delache et al., C. R. Mecanique 330 (2002) 885–891.  相似文献   

14.
The present paper highlights results derived from the application of a high-fidelity simulation technique to the analysis of low-Reynolds-number transitional flows over moving and flexible canonical configurations motivated by small natural and man-made flyers. This effort addresses three separate fluid dynamic phenomena relevant to small fliers, including: laminar separation and transition over a stationary airfoil, transition effects on the dynamic stall vortex generated by a plunging airfoil, and the effect of flexibility on the flow structure above a membrane airfoil. The specific cases were also selected to permit comparison with available experimental measurements. First, the process of transition on a stationary SD7003 airfoil section over a range of Reynolds numbers and angles of attack is considered. Prior to stall, the flow exhibits a separated shear layer which rolls up into spanwise vortices. These vortices subsequently undergo spanwise instabilities, and ultimately breakdown into fine-scale turbulent structures as the boundary layer reattaches to the airfoil surface. In a time-averaged sense, the flow displays a closed laminar separation bubble which moves upstream and contracts in size with increasing angle of attack for a fixed Reynolds number. For a fixed angle of attack, as the Reynolds number decreases, the laminar separation bubble grows in vertical extent producing a significant increase in drag. For the lowest Reynolds number considered (Re c  = 104), transition does not occur over the airfoil at moderate angles of attack prior to stall. Next, the impact of a prescribed high-frequency small-amplitude plunging motion on the transitional flow over the SD7003 airfoil is investigated. The motion-induced high angle of attack results in unsteady separation in the leading edge and in the formation of dynamic-stall-like vortices which convect downstream close to the airfoil. At the lowest value of Reynolds number (Re c  = 104), transition effects are observed to be minor and the dynamic stall vortex system remains fairly coherent. For Re c  = 4 × 104, the dynamic-stall vortex system is laminar at is inception, however shortly afterwards, it experiences an abrupt breakdown associated with the onset of spanwise instability effects. The computed phased-averaged structures for both values of Reynolds number are found to be in good agreement with the experimental data. Finally, the effect of structural compliance on the unsteady flow past a membrane airfoil is investigated. The membrane deformation results in mean camber and large fluctuations which improve aerodynamic performance. Larger values of lift and a delay in stall are achieved relative to a rigid airfoil configuration. For Re c = 4.85 × 104, it is shown that correct prediction of the transitional process is critical to capturing the proper membrane structural response.  相似文献   

15.
Pulsatile flows in the vicinity of mechanical ring-type constrictions in pipes were studied for transitional turbulent flow with a Reynolds number (Re) of the order of 104. The Womersley number (Nw) is in the range 30–50, with a corresponding Strouhal number (St) range of 0·0143–0·0398. The pulsatile flows considered are a pure sinusoidal flow, a physiological flow and an experimental pulsatile flow profile for mechanical aortic valve flow simulations. Transitional laminar and turbulent flow characteristics in an alternating manner within the pulsatile flow fields were studied numerically. It was observed that fluid accelerations tend to suppress the development of flow disturbances. All the instantaneous maximum values of turbulent kinetic energy, turbulent viscosity and turbulent shear stress are smaller during the acceleration phase than during the deceleration period. Various parametric equations have been formulated through numerical experimentation to better describe the relationships between the instantaneous flow rate (Q), the pressure loss (ΔP), the maximum velocity (Vmax), the maximum vorticity (ζmax), the maximum wall vorticity (ζw,max), the maximum shear stress (τmax) and the maximum wall shear stress (τw,max) for turbulent pulsatile flow in the vicinity of constrictions in the vascular tube. An elliptic relationship has been found to exist between the instantaneous flow rate and the instantaneous pressure gradient. Other linear and quadratic relations between various flow parameters were also obtained.  相似文献   

16.
Turbulence in rough-wall boundary layers: universality issues   总被引:1,自引:0,他引:1  
Wind tunnel measurements of turbulent boundary layers over three-dimensional rough surfaces have been carried out to determine the critical roughness height beyond which the roughness affects the turbulence characteristics of the entire boundary layer. Experiments were performed on three types of surfaces, consisting of an urban type surface with square random height elements, a diamond-pattern wire mesh and a sand-paper type grit. The measurements were carried out over a momentum thickness Reynolds number (Re θ) range of 1,300–28,000 using two-component Laser Doppler anemometry (LDA) and hot-wire anemometry (HWA). A wide range of the ratio of roughness element height h to boundary layer thickness δ was covered (0.04 £ h/d £ 0.400.04 \leq h/\delta \leq 0.40). The results confirm that the mean profiles for all the surfaces collapse well in velocity defect form up to surprisingly large values of h/δ, perhaps as large as 0.2, but with a somewhat larger outer layer wake strength than for smooth-wall flows, as previously found. At lower h/δ, at least up to 0.15, the Reynolds stresses for all surfaces show good agreement throughout the boundary layer, collapsing with smooth-wall results outside the near-wall region. With increasing h/δ, however, the turbulence above the near-wall region is gradually modified until the entire flow is affected. Quadrant analysis confirms that changes in the rough-wall boundary layers certainly exist but are confined to the near-wall region at low h/δ; for h/δ beyond about 0.2 the quadrant events show that the structural changes extend throughout much of the boundary layer. Taken together, the data suggest that above h/δ ≈ 0.15, the details of the roughness have a weak effect on how quickly (with rising h/δ) the turbulence structure in the outer flow ceases to conform to the classical boundary layer behaviour. The present results provide support for Townsend’s wall similarity hypothesis at low h/δ and also suggest that a single critical roughness height beyond which it fails does not exist. For fully rough flows, the data also confirm that mean flow and turbulence quantities are essentially independent of Re θ; all the Reynolds stresses match those of smooth-wall flows at very high Re θ. Nonetheless, there is a noticeable increase in stress contributions from strong sweep events in the near-wall region, even at quite low h/δ.  相似文献   

17.
An experimental study was conducted to examine the effects of surface roughness and adverse pressure gradient (APG) on the development of a turbulent boundary layer. Hot-wire anemometry measurements were carried out using single and X-wire probes in all regions of a developing APG flow in an open return wind tunnel test section. The same experimental conditions (i.e., T U ref, and C p) were maintained for smooth, k + = 0, and rough, k + = 41–60, surfaces with Reynolds number based on momentum thickness, 3,000 < Re θ < 40,000. The experiment was carefully designed such that the x-dependence in the flow field was known. Despite this fact, only a very small region of the boundary layer showed a balance of the various terms in the integrated boundary layer equation. The skin friction computed from this technique showed up to a 58% increase due to the surface roughness. Various equilibrium parameters were studied and the effect of roughness was investigated. The generated flow was not in equilibrium according to the Clauser (J Aero Sci 21:91–108, 1954) definition due to its developing nature. After a development region, the flow reached the equilibrium condition as defined by Castillo and George (2001), where Λ = const, is the pressure gradient parameter. Moreover, it was found that this equilibrium condition can be used to classify developing APG flows. Furthermore, the Zagarola and Smits (J Fluid Mech 373:33–79, 1998a) scaling of the mean velocity deficit, U δ*/δ, can also be used as a criteria to classify developing APG flows which supports the equilibrium condition of Castillo and George (2001). With this information a ‘full APG region’ was defined.  相似文献   

18.
Particle image velocimetry (PIV) measurements and planar laser induced fluorescence (PLIF) visualizations have been made in a turbulent boundary layer over a rough wall. The wall roughness consisted of square bars placed transversely to the flow at a pitch to height ratio of λ/k = 11 for the PLIF experiments and λ/k = 8 and 16 for the PIV measurements. The ratio between the boundary layer thickness and the roughness height k/δ was about 20 for the PLIF and 38 for the PIV. Both the PLIF and PIV data showed that the near-wall region of the flow was populated by unstable quasi-coherent structures which could be associated to shear layers originating at the trailing edge of the roughness elements. The streamwise mean velocity profile presented a downward shift which varied marginally between the two cases of λ/k, in agreement with previous measurements and DNS results. The data indicated that the Reynolds stresses normalized by the wall units are higher for the case λ/k = 16 than those for λ/k = 8 in the outer region of the flow, suggesting that the roughness density effects could be felt well beyond the near-wall region of the flow. As expected the roughness disturbed dramatically the sublayer which in turn altered the turbulence production mechanism. The turbulence production is maximum at a distance of about 0.5k above the roughness elements. When normalized by the wall units, the turbulence production is found to be smaller than that of a smooth wall. It is argued that the production of turbulence is correlated with the form drag.  相似文献   

19.
Experiments were conducted in water and wind tunnels on spheres in the Reynolds number range 6 × 103 to 6.5 × 105 to study the effect of natural ventilation on the boundary layer separation and near-wake vortex shedding characteristics. In the subcritical range of Re (<2 × 105), ventilation caused a marginal downstream shift in the location of laminar boundary layer separation; there was only a small change in the vortex shedding frequency. In the supercritical range (Re > 4 × 105), ventilation caused a downstream shift in the mean locations of boundary layer separation and reattachment; these lines showed significant axisymmetry in the presence of venting. No distinct vortex shedding frequency was found. Instead, a dramatic reduction occurred in the wake unsteadiness at all frequencies. The reduction of wake unsteadiness is consistent with the reduction in total drag already reported. Based on the present results and those reported earlier, the effects of natural ventilation on the flow past a sphere can be categorized in two broad regimes, viz., weak and strong interaction regimes. In the weak interaction regime (subcritical Re), the broad features of the basic sphere are largely unaltered despite the large addition of mass in the near wake. Strong interaction is promoted by the closer proximity of the inner and outer shear layers at supercritical Re. This results in a modified and steady near-wake flow, characterized by reduced unsteadiness and small drag. Received: 8 September 1998 / Accepted: 1 January 2000  相似文献   

20.
The present work examines the turbulent flow in an enclosed rotor–stator system subjected to heat transfer effects. Besides their fundamental importance as three-dimensional prototype flows, such flows arise in many industrial applications but also in many geophysical and astrophysical settings. Large eddy simulations (LES) are here performed using a spectral vanishing viscosity technique. The LES results have already been favorably compared to velocity measurements in the isothermal case (Séverac, E., Poncet, S., Serre, E., Chauve, M.P., 2007. Large eddy simulation and measurements of turbulent enclosed rotor–stator flows. Phys. Fluids, 19, 085113) for a large range of Reynolds numbers 105Re=Ωb2/ν106, in an annular cavity of large aspect ratio G=(b-a)/H=5 and weak curvature parameter Rm=(b-a)/(b+a)=1.8 (a,b the inner and outer radii of the rotor and H the interdisk spacing). The purpose of this paper is to extend these previous results in the non-isothermal case using the Boussinesq approximation to take into account the buoyancy effects. Thus, the effects of thermal convection have been examined for a turbulent flow Re=106 of air in the same rotor–stator system for Rayleigh numbers up to Ra=108. These LES results provide accurate, instantaneous quantities which are of interest in understanding the physics of turbulent flows and heat transfers in an interdisk cavity. Even at high Rayleigh numbers, the structure of the iso-values of the instantaneous normal temperature gradient at the disk surfaces resembles the one of the iso-values of the tangential velocity with large spiral arms along the rotor and more thin structures along the stator. The averaged results show small effects of density variation on the mean and turbulent fields. The turbulent Prandtl number is a decreasing function of the distance to the wall with 1.4 close to the disks and about 0.3 in the outer layers. The local Nusselt number is found to be proportional to the local Reynolds number to the power 0.7. The evolution of the averaged Bolgiano length scale LB with the Rayleigh number indicates that temperature fluctuations may have a large influence on the dynamics only at the largest scales of the system for Ra107, since LB remains lower than the thermal boundary layer thicknesses.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号