首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
This paper presents large eddy simulation (LES) results of incompressible heat and fluid flows around a square cylinder (SC) at zero incident angle at high Reynolds numbers (Re) in the range from 1.25×105 to 3.5×105. LES results are obtained on the basis of swirling strength based sub-grid model, and a higher order upwind scheme developed with respect to the Taylor expansion. It was found that, for the zero incident SC wake flows at a Reynolds number in the range {Re5 = Re/105 ∈ [1.25, 3.5]}, the Strouhal number equals to 0.1079, completely independent of the Reynolds number; the coefficient of drag is around 1.835 with an uncertainty of about 1.9%, almost non-sensitive to the Re. When Re is beyond 3.0×105, the time-averaged peak value of sub-grid viscosity is over 340, implying that the role of sub-grid model is crucial in some regions where vortex motion is active and vortex interaction is intense. The time–spanwise (t-z) averaged sub-grid viscosity ratio profiles and the profiles of fluctuations of the sub-grid viscosity ratio and velocity components at four locations downstream of the SC are presented. The fields of the t-z averaged sub-grid viscosity ratio, and the instantaneous fields of streamwise and spanwise vorticities are also reported and discussed. The predicted mean Nusselt number is compared with empirical correlations, revealing that swirling strength based LES has its potential in predicting natural and industrial flows.  相似文献   

2.
In view of the fact that large scale vortices play the substantial role of momentum transport in turbulent flows, large eddy simulation(LES) is considered as a better simulation model. However, the sub-grid scale(SGS) models reported so far have not ascertained under what flow conditions the LES can lapse into the direct numerical simulation. To overcome this discrepancy, this paper develops a swirling strength based the SGS model to properly model the turbulence intermittency, with the primary characteristics that when the local swirling strength is zero, the local sub-grid viscosity will be vanished. In this paper, the model is used to investigate the flow characteristics of zero-incident incompressible turbulent flows around a single square cylinder(SC)at a low Reynolds number range Re ∈ [103, 104]. The flow characteristics investigated include the Reynolds number dependence of lift and drag coefficients, the distributions of time-spanwise averaged variables such as the sub-grid viscosity and the logarithm of Kolmogorov micro-scale to the base of 10 at Re = 2 500 and 104, the contours of spanwise and streamwise vorticity components at t = 170. It is revealed that the peak value of sub-grid viscosity ratio and its root mean square(RMS) values grow with the Reynolds number. The dissipation rate of turbulent kinetic energy is larger near the SC solid walls.The instantaneous factor of swirling strength intermittency(FSI) exhibits some laminated structure involved with vortex shedding.  相似文献   

3.
The effect of an isolated roughness element on the forces on a sphere was examined for a Reynolds number range of 5 × 104 < Re < 5 × 105 using a novel sting-mounted sphere apparatus. The roughness element was a circular cylinder, and its width and height was varied to be 1, 2, and 4% of the sphere diameter. At subcritical Re, a lateral force is produced in the direction of the roughness, while at supercritical Re, the force is in the opposite direction. This is caused by asymmetric boundary layer separation, as shown using particle image velocimetry. At supercritical Re, a roughness element that is only 1% the sphere diameter produces a lift to drag ratio of almost one. It was found that the isolated roughness element has the largest effect on the lateral forces when it is located between a streamwise angle of about 40° and 80°. In addition to the mean forces, the unsteady forces were also measured. It was found that at subcritical Re, vortex shedding is aligned to the plane of the roughness element. In addition, the probability distribution of the forces was nearly Gaussian for subcritical Re, but for supercritical Re, the skewness and kurtosis deviate from Gaussian, and the details are dependent on the roughness size. A simple model developed for the vortical structure formed behind the roughness element can be extended to explain aspects of nominally smooth sphere flow, in which external disturbances perturb the sphere boundary layer in an azimuthally local sense. These results also form the basis of comparison for an investigation into the effectiveness of a moving isolated roughness element for manipulating sphere flow.  相似文献   

4.
Large eddy simulation (LES) is carried out to investigate the turbulent boundary-layer flows over a hill-shaped model with a steep or relatively moderate slope at moderately high Reynolds numbers (Re = O(103)) defined by the hill height and the velocity at the hill height. The study focuses on the effects of surface roughness and curvature. For Sub-grid Scale (SGS) modeling of LES, both the dynamic Smagorinsky model (DSM) and the dynamic mixed model (DMM) are applied. The behavior of the separated shear layer and the vortex motion are affected by the oncoming turbulence, such that the shear layer comes close to the ground surface, or the size of a separation region becomes small because of the earlier instability of the separated shear layer. Appropriate measures are required to generate the inflow turbulence. The methods of Lund et al. (J. Comput. Phys., 140:233–258, 1998) and Nozawa and Tamura (J. Wind Eng. Ind. Aerodyn., 90:1151–1162, 2002; The 4th European and African Conference on Wind Engineering, 1–6, 2005) are employed to simulate the smooth- and rough-wall turbulent boundary layers in order to generate time-sequential data of inflow turbulence. This paper discusses the unsteady phenomena of the wake flows over the smooth and rough 2D hill-shaped obstacles and aims to clarify the roughness effects on the flow patterns and the turbulence statistics distorted by the hill. Numerical validation is conducted by comparing the simulation results with wind tunnel experiment data for the same hill shape at almost the same Re. The applicability of DSM and DMM are discussed, focusing on the recirculation region behind a steep hill.  相似文献   

5.
This study quantifies degradation of polyethylene oxide (PEO) and polyacrylamide (PAM) polymer solutions in large diameter (2.72 cm) turbulent pipe flow at Reynolds numbers to 3 × 105 and shear rates greater than 105 1/s. The present results support a universal scaling law for polymer chain scission reported by Vanapalli et al. (2006) that predicts the maximum chain drag force to be proportional to Re 3/2, validating this scaling law at higher Reynolds numbers than prior studies. Use of this scaling gives estimated backbone bond strengths from PEO and PAM of 3.2 and 3.8 nN, respectively. Additionally, with the use of synthetic seawater as a solvent the onset of drag reduction occurred at higher shear rates relative to the pure water solvent solutions, but had little influence on the extent of degradation at higher shear rates. These results are significant for large diameter pipe flow applications that use polymers to reduce drag.  相似文献   

6.
The paper describes the validation of a newly developed very LES (VLES) method for the simulation of turbulent separated flow. The new VLES method is a unified simulation approach that can change seamlessly from Reynolds‐averaged Navier–Stokes to DNS depending on the numerical resolution. Four complex test cases are selected to validate the performance of the new method, that is, the flow past a square cylinder at Re = 3000 confined in a channel (with a blockage ratio of 20%), the turbulent flow over a circular cylinder at Re = 3900 as well as Re = 140,000, and a turbulent backward‐facing step flow with a thick incoming boundary layer at Re = 40,000. The simulation results are compared with available experimental, LES, and detached eddy simulation‐type results. The new VLES model performs well overall, and the predictions are satisfactory compared with previous experimental and numerical results. It is observed that the new VLES method is quite efficient for the turbulent flow simulations; that is, good predictions can be obtained using a quite coarse mesh compared with the previous LES method. Discussions of the implementation of the present VLES modeling are also conducted on the basis of the simulations of turbulent channel flow up to high Reynolds number of Reτ = 4000. The efficiency of the present VLES modeling is also observed in the channel flow simulation. From a practical point of view, this new method has considerable potential for more complex turbulent flow simulations at relative high Reynolds numbers. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   

7.
A strategy which blends a variational multiscale large eddy simulation (VMS-LES) model and a RANS model in a hybrid approach is investigated. A smooth blending function, which is based on the value of a blending parameter, is used for switching from VMS-LES to RANS. Different definitions of the blending parameter are investigated. The capabilities of the novel hybrid approach are appraised in the simulation of the flow around a circular cylinder at a Reynolds number 1.4×105, based on the freestream velocity and on the cylinder diameter, in the presence of turbulent boundary-layer due to turbulent inflow conditions. A second study at Reynolds numbers from Re=6.7×105 to 1.25×106 is also presented. The effect of using the VMS-LES approach in the hybrid model is evaluated. Results are compared to those of other RANS, LES and hybrid simulations in the literature and with experimental data  相似文献   

8.
To unravel the widespread perception that the RANS (Reynolds-averaged Navier-Stokes) concept is unreliable in predicting the dynamics of separated flows, we assessed the performance of two RANS closure levels, the linear eddy-viscosity (LEVM) and the second-moment (Reynolds stress, RSM) approaches in a massively separated generic flow over a bluff body. Considered is the canonical, zero-turbulence, cross-flow over an infinite cylinder with reference to our LES and the available DNS and experiments at two Reynolds numbers, Re = 3.9 × 103 and 1.4 × 105, both within the sub-critical regime with laminar separation. Both models capture successfully the vortex shedding frequency, but the low frequency modulations are detected only by the RSM. At high Reynolds numbers the RSM is markedly superior to the LEVM showing very good agreement with the LES and experimental data. The RSM, accounting naturally for the stress anisotropy and phase lag between the stress and strain eigenvectors, is especially successful in reproducing the growth rate of the turbulent kinetic energy in the initial shear layer which proved to be crucial for accurate prediction of the separation-induced transition. A scrutiny of the unsteady RANS (URANS) stress terms based on the conditional phase-averaged LES data shows a remarkable similarity of the normalized coherent and stochastic (modeled) stress components for the two Reynolds numbers considered. The mixed (cross) correlations, while non-negligible at the low Re number, diminish fast relative to the stochastic ones with increasing Reynolds number and, in the whole, are not significant to undermine the URANS concept and its applicability to high Re flows of industrial relevance.  相似文献   

9.
Flow past a circular cylinder for Re=100 to 107 is studied numerically by solving the unsteady incompressible two‐dimensional Navier–Stokes equations via a stabilized finite element formulation. It is well known that beyond Re ~ 200 the flow develops significant three‐dimensional features. Therefore, two‐dimensional computations are expected to fall well short of predicting the flow accurately at high Re. It is fairly well accepted that the shear layer instability is primarily a two‐dimensional phenomenon. The frequency of the shear layer vortices, from the present computations, agree quite well with the Re0.67 variation observed by other researchers from experimental measurements. The main objective of this paper is to investigate a possible relationship between the drag crisis (sudden loss of drag at Re ~ 2 × 105) and the instability of the separated shear layer. As Re is increased the transition point of shear layer, beyond which it is unstable, moves upstream. At the critical Reynolds number the transition point is located very close to the point of flow separation. As a result, the shear layer eddies cause mixing of the flow in the boundary layer. This energizes the boundary layer and leads to its reattachment. The delay in flow separation is associated with narrowing of wake, increase in Reynolds shear stress near the shoulder of the cylinder and a significant reduction in the drag and base suction coefficients. The spatial and temporal power spectra for the kinetic energy of the Re=106 flow are computed. As in two‐dimensional isotropic turbulence, E(k) varies as k?5/3 for wavenumbers higher than energy injection scale and as k?3 for lower wavenumbers. The present computations suggest that the shear layer vortices play a major role in the transition of boundary layer from laminar to turbulent state. Copyright © 2004 John Wiley & Sons, Ltd.  相似文献   

10.
The present paper highlights results derived from the application of a high-fidelity simulation technique to the analysis of low-Reynolds-number transitional flows over moving and flexible canonical configurations motivated by small natural and man-made flyers. This effort addresses three separate fluid dynamic phenomena relevant to small fliers, including: laminar separation and transition over a stationary airfoil, transition effects on the dynamic stall vortex generated by a plunging airfoil, and the effect of flexibility on the flow structure above a membrane airfoil. The specific cases were also selected to permit comparison with available experimental measurements. First, the process of transition on a stationary SD7003 airfoil section over a range of Reynolds numbers and angles of attack is considered. Prior to stall, the flow exhibits a separated shear layer which rolls up into spanwise vortices. These vortices subsequently undergo spanwise instabilities, and ultimately breakdown into fine-scale turbulent structures as the boundary layer reattaches to the airfoil surface. In a time-averaged sense, the flow displays a closed laminar separation bubble which moves upstream and contracts in size with increasing angle of attack for a fixed Reynolds number. For a fixed angle of attack, as the Reynolds number decreases, the laminar separation bubble grows in vertical extent producing a significant increase in drag. For the lowest Reynolds number considered (Re c  = 104), transition does not occur over the airfoil at moderate angles of attack prior to stall. Next, the impact of a prescribed high-frequency small-amplitude plunging motion on the transitional flow over the SD7003 airfoil is investigated. The motion-induced high angle of attack results in unsteady separation in the leading edge and in the formation of dynamic-stall-like vortices which convect downstream close to the airfoil. At the lowest value of Reynolds number (Re c  = 104), transition effects are observed to be minor and the dynamic stall vortex system remains fairly coherent. For Re c  = 4 × 104, the dynamic-stall vortex system is laminar at is inception, however shortly afterwards, it experiences an abrupt breakdown associated with the onset of spanwise instability effects. The computed phased-averaged structures for both values of Reynolds number are found to be in good agreement with the experimental data. Finally, the effect of structural compliance on the unsteady flow past a membrane airfoil is investigated. The membrane deformation results in mean camber and large fluctuations which improve aerodynamic performance. Larger values of lift and a delay in stall are achieved relative to a rigid airfoil configuration. For Re c = 4.85 × 104, it is shown that correct prediction of the transitional process is critical to capturing the proper membrane structural response.  相似文献   

11.
Large-eddy simulations (LES) of a planar, asymmetric diffuser flow have been performed. The diverging angle of the inclined wall of the diffuser is chosen as 8.5°, a case for which recent experimental data are available. Reasonable agreement between the LES and the experiments is obtained. The numerical method is further validated for diffuser flow with the diffuser wall inclined at a diverging angle of 10°, which has served as a test case for a number of experimental as well as numerical studies in the literature (LES, RANS). For the present results, the subgrid-scale stresses have been closed using the dynamic Smagorinsky model. A resolution study has been performed, highlighting the disparity of the relevant temporal and spatial scales and thus the sensitivity of the simulation results to the specific numerical grids used. The effect of different Reynolds numbers of the inflowing, fully turbulent channel flow has been studied, in particular, Re b  = 4,500, Re b  = 9,000 and Re b  = 20,000 with Re b being the Reynolds number based on the bulk velocity and channel half width. The results consistently show that by increasing the Reynolds number a clear trend towards a larger separated region is evident; at least for the studied, comparably low Reynolds-number regime. It is further shown that the small separated region occurring at the diffuser throat shows the opposite behaviour as the main separation region, i.e. the flow is separating less with higher Re b . Moreover, the influence of the Reynolds number on the internal layer occurring at the non-inclined wall described in a recent study has also been assessed. It can be concluded that this region close to the upper, straight wall, is more distinct for larger Re b . Additionally, the influence of temporal correlations arising from the commonly used periodic turbulent channel flow as inflow condition (similar to a precursor simulation) for the diffuser is assessed.  相似文献   

12.
Among the various hybrid methodologies, Speziale's very large eddy simulation (VLES) is one that was proposed very early. It is a unified simulation approach that can change seamlessly from Reynolds Averaged Navier–Stokes (RANS) to direct numerical simulation (DNS) depending on the numerical resolution. The present study proposes a new improved variant of the original VLES model. The advantages are achieved in two ways: (i) RANS simulation can be recovered near the wall which is similar to the detached eddy simulation concept; (ii) a LES subgrid scale model can be reached by the introduction of a third length scale, that is, the integral turbulence length scale. Thus, the new model can provide a proper LES mode between the RANS and DNS limits. This new methodology is implemented in the standard k ? ? model. Applications are conducted for the turbulent channel flow at Reynolds number of Reτ = 395, periodic hill flow at Re = 10,595, and turbulent flow past a square cylinder at Re = 22,000. In comparison with the available experimental data, DNS or LES, the new VLES model produces better predictions than the original VLES model. Furthermore, it is demonstrated that the new method is quite efficient in resolving the large flow structures and can give satisfactory predictions on a coarse mesh. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   

13.
The adverse pressure gradient induced by a surface-mounted obstacle in a turbulent boundary layer causes the approaching flow to separate and form a dynamically rich horseshoe vortex system (HSV) in the junction of the obstacle with the wall. The Reynolds number of the flow (Re) is one of the important parameters that control the rich coherent dynamics of the vortex, which are known to give rise to low-frequency, bimodal fluctuations of the velocity field (Devenport and Simpson, J Fluid Mech 210:23–55, 1990; Paik et al., Phys Fluids 19:045107, 2007). We carry out detached eddy simulations (DES) of the flow past a circular cylinder mounted on a rectangular channel for Re = 2.0 × 104 and 3.9 × 104 (Dargahi, Exp Fluids 8:1–12, 1989) in order to systematically investigate the effect of the Reynolds number on the HSV dynamics. The computed results are compared with each other and with previous experimental and computational results for a related junction flow at a much higher Reynolds number (Re = 1.15 × 105) (Devenport and Simpson, J Fluid Mech 210:23–55, 1990; Paik et al., Phys Fluids 19:045107, 2007). The computed results reveal significant variations with Re in terms of the mean-flow quantities, turbulence statistics, and the coherent dynamics of the turbulent HSV. For Re = 2.0 × 104 the HSV system consists of a large number of necklace-type vortices that are shed periodically at higher frequencies than those observed in the Re = 3.9 × 104 case. For this latter case the number of large-scale vortical structures that comprise the instantaneous HSV system is reduced significantly and the flow dynamics becomes quasi-periodic. For both cases, we show that the instantaneous flowfields are dominated by eruptions of wall-generated vorticity associated with the growth of hairpin vortices that wrap around and disorganize the primary HSV system. The intensity and frequency of these eruptions, however, appears to diminish rapidly with decreasing Re. In the high Re case the HSV system consists of a single, highly energetic, large-scale necklace vortex that is aperiodically disorganized by the growth of the hairpin mode. Regardless of the Re, we find pockets in the junction region within which the histograms of velocity fluctuations are bimodal as has also been observed in several previous experimental studies.  相似文献   

14.
Experiments were conducted in water and wind tunnels on spheres in the Reynolds number range 6 × 103 to 6.5 × 105 to study the effect of natural ventilation on the boundary layer separation and near-wake vortex shedding characteristics. In the subcritical range of Re (<2 × 105), ventilation caused a marginal downstream shift in the location of laminar boundary layer separation; there was only a small change in the vortex shedding frequency. In the supercritical range (Re > 4 × 105), ventilation caused a downstream shift in the mean locations of boundary layer separation and reattachment; these lines showed significant axisymmetry in the presence of venting. No distinct vortex shedding frequency was found. Instead, a dramatic reduction occurred in the wake unsteadiness at all frequencies. The reduction of wake unsteadiness is consistent with the reduction in total drag already reported. Based on the present results and those reported earlier, the effects of natural ventilation on the flow past a sphere can be categorized in two broad regimes, viz., weak and strong interaction regimes. In the weak interaction regime (subcritical Re), the broad features of the basic sphere are largely unaltered despite the large addition of mass in the near wake. Strong interaction is promoted by the closer proximity of the inner and outer shear layers at supercritical Re. This results in a modified and steady near-wake flow, characterized by reduced unsteadiness and small drag. Received: 8 September 1998 / Accepted: 1 January 2000  相似文献   

15.
We propose and analyze a wall model based on the turbulent boundary layer equations (TBLE) for implicit large-eddy simulation (LES) of high Reynolds number wall-bounded flows in conjunction with a conservative immersed-interface method for mapping complex boundaries onto Cartesian meshes. Both implicit subgrid-scale model and immersed-interface treatment of boundaries offer high computational efficiency for complex flow configurations. The wall model operates directly on the Cartesian computational mesh without the need for a dual boundary-conforming mesh. The combination of wall model and implicit LES is investigated in detail for turbulent channel flow at friction Reynolds numbers from Re τ  = 395 up to Re τ =100,000 on very coarse meshes. The TBLE wall model with implicit LES gives results of better quality than current explicit LES based on eddy viscosity subgrid-scale models with similar wall models. A straightforward formulation of the wall model performs well at moderately large Reynolds numbers. A logarithmic-layer mismatch, observed only at very large Reynolds numbers, is removed by introducing a new structure-based damping function. The performance of the overall approach is assessed for two generic configurations with flow separation: the backward-facing step at Re h = 5,000 and the periodic hill at Re H = 10,595 and Re H = 37,000 on very coarse meshes. The results confirm the observations made for the channel flow with respect to the good prediction quality and indicate that the combination of implicit LES, immersed-interface method, and TBLE-based wall modeling is a viable approach for simulating complex aerodynamic flows at high Reynolds numbers. They also reflect the limitations of TBLE-based wall models.  相似文献   

16.
A numerical investigation on low‐Reynolds‐number external aerodynamics was conducted using the transitional unsteady Reynolds‐averaged Navier–Stokes shear stress transport γ ?Reθ model and the ANSYS‐CFX computational fluid dynamics suite. The NACA 0012 airfoil was exposed to chord‐based Reynolds numbers of 5.0 ×104, 1.0 ×105 and 2.5 ×105 at 0°, 4°and 8°angles of attack. Time‐averaged and instantaneous flow features were extracted and compared with fully turbulent shear stress transport results, XFLR5 panel e N method results, and published higher order numerical and experimental studies. The current model was shown to reproduce the complex flow phenomena, including the laminar separation bubble dynamics and aerodynamic performance, with a very good degree of accuracy. The sensitivity of the model to domain size, grid resolution and quality, timestepping scheme, and free‐stream turbulence intensity was also presented. In view of the results obtained, the proposed model is deemed appropriate for modelling low‐Reynolds‐number external aerodynamics and provides a framework for future studies for the better understanding of this complex flow regime. Copyright © 2011 John Wiley & Sons, Ltd.  相似文献   

17.
The boundary layer structure of oscillatory shallow open channel flows has been studied in a wide flume. Fluorescence solution was released at a porous rough bed through a diffuser covered by gravel of 0.5 cm grain size. A planar laser-induced fluorescence (PLIF) system was used to visualise the dye plumes in both vertical and horizontal planes for a qualitative understanding of the roles of large-scale flow structures in mass transport. A variety of tests were conducted for a range of oscillatory periods (30–240 s), water depths (3–16 cm) and velocity amplitudes (0.027–0.325 m/s), which cover a wide range of oscillatory flows with Reynolds numbers Re a varied from 0.3 × 104 (laminar) to 2.1 × 106 (fully turbulent). For quantitative investigation, a novel technique, namely combined laser-induced fluorescence (LIF) and 2D laser Doppler velocimetry (LDV) (LIF/LDV), was developed and used to measure the velocity and solute concentration simultaneously in a vertical plane over 50 cycles. From the dye plumes revealed by the PLIF in transitional flows, there are different patterns of flow structure and solute transport with three representative stages of acceleration, deceleration and flow reversal. In the acceleration stage, turbulence was suppressed with dye layers adhering to the surface with little vertical mass transport. In the deceleration stage, flame-like turbulent structures occurred when turbulence generation was prominent. This was investigated quantitatively by recording the percentage occurrence of the adhered smooth layers per cycle. For those smooth bed cases with Re a < 1.8 × 105, the adhered smooth dye layers type of boundary layer occupied 100% of the oscillation period. Over a sufficiently high Re a , a rough bed can generate fully turbulent oscillatory flows without the appearance of adhering dye layers. Between these two extremes, a transitional flow regime occurs in a wide range of flow conditions: Re a > 2.7 × 104 over the rough bed and Re a > 8.3 × 106 over a smooth bed.  相似文献   

18.
Incompressible flow separating from the upper surface of an airfoil at an 18° angle of attack and a Reynolds number of Re = 105, based on the freestream velocity and chord length c, is studied by the means of large-eddy simulation (LES). The numerical method is based on second-order central spatial discretization on a Cartesian grid using an immersed boundary technique. The results are compared with an LES using body-fitted nonorthogonal grids and with experimental data.  相似文献   

19.
A parallel large eddy simulation code that adopts domain decomposition method has been developed for large‐scale computation of turbulent flows around an arbitrarily shaped body. For the temporal integration of the unsteady incompressible Navier–Stokes equation, fractional 4‐step splitting algorithm is adopted, and for the modelling of small eddies in turbulent flows, the Smagorinsky model is used. For the parallelization of the code, METIS and Message Passing Interface Libraries are used, respectively, to partition the computational domain and to communicate data between processors. To validate the parallel architecture and to estimate its performance, a three‐dimensional laminar driven cavity flow inside a cubical enclosure has been solved. To validate the turbulence calculation, the turbulent channel flows at Reτ = 180 and 1050 are simulated and compared with previous results. Then, a backward facing step flow is solved and compared with a DNS result for overall code validation. Finally, the turbulent flow around MIRA model at Re = 2.6 × 106 is simulated by using approximately 6.7 million nodes. Scalability curve obtained from this simulation shows that scalable results are obtained. The calculated drag coefficient agrees better with the experimental result than those previously obtained by using two‐equation turbulence models. Copyright © 2007 John Wiley & Sons, Ltd.  相似文献   

20.
The large eddy simulation model with Smagorinsky subgrid-scale model was applied to two-dimensional turbulent convective cavity flow. The Reynolds number is lying from 1×104 to 4×105 and Archimedes number from 0 to 0.4. The simulation results were compared with the k?? model results and experimental results wherever possible. Flow results were in good agreement with experimental data across the mid-planes. Effects of Smagorinsky constant and grid resolution were investigated.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号