首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
A series of metal‐free organic dyes with electron‐rich (D) and electron‐deficient units (A) as π linkers have been studied theoretically by means of density functional theory (DFT) and time‐dependent DFT calculations to explore the effects of π spacers on the optical and electronic properties of triphenylamine dyes. The results show that Dye 1 with a structure of D‐A‐A‐A is superior to the typical C218 dye in various key aspects, including the maximum absorption (λmax=511 nm), the charge‐transfer characteristics (Dq/t is 5.49 Å/0.818 e?/4.41 Å), the driving force for charge‐carrier injection (ΔGinject=1.35 eV)/dye regeneration (ΔGregen=0.27 eV), and the lifetime of the first excited state (τ=3.1 ns). It is thus proposed to be a promising candidate in dye‐sensitized solar cell applications.  相似文献   

2.
[NMe4]2[TCNE]2 (TCNE=tetracyanoethenide) formed from the reaction of TCNE and (NMe4)CN in MeCN has νCN IR absorptions at 2195, 2191, 2172, and 2156 cm?1 and a νCC absorption at 1383 cm?1 that are characteristic of reduced TCNE. The TCNEs have an average central C?C distance of 1.423 Å that is also characteristic of reduced TCNE. The reduced TCNE forms a previously unknown non‐eclipsed, centrosymmetric π‐[TCNE]22? dimer with nominal C2 symmetry, 12 sub van der Waals interatomic contacts <3.3 Å, a central intradimer separation of 3.039(3) Å, and comparable intradimer C???N distances of 3.050(3) and 2.984(3) Å. The two pairs of central C???C atoms form a ?C?C???C?C of 112.6° that is substantially greater than the 0° observed for the eclipsed D2h π‐[TCNE]22? dimer possessing a two‐electron, four‐center (2e?/4c) bond with two C???C components from a molecular orbital (MO) analysis. A MO study combining CAS(2,2)/MRMP2/cc‐pVTZ and atoms‐in‐molecules (AIM) calculations indicates that the non‐eclipsed, C2 π‐[TCNE]22? dimer exhibits a new type of a long, intradimer bond involving one strong C???C and two weak C???N components, that is, a 2e?/6c bond. The C2 π‐[TCNE]22? conformer has a singlet, diamagnetic ground state with a thermally populated triplet excited state with J/kB=1000 K (700 cm?1; 86.8 meV; 2.00 kcal mol?1; H=?2 JSa?Sb); at the CAS(2,2)/MBMP2 level the triplet is computed to be 9.0 kcal mol?1 higher in energy than the closed‐shell singlet ground state. The results from CAS(2,2)/NEVPT2/cc‐pVTZ calculations indicate that the C2 and D2h conformers have two different local metastable minima with the C2 conformer being 1.3 kcal mol?1 less stable. The different natures of the C2 and D2h conformers are also noted from the results of valence bond (VB) qualitative diagram that shows a 10e?/6c bond with one C???C and two C???N bonding components for the C2 conformer as compared to the 6e?/4c bond for the D2h conformer with two C???C bonding components.  相似文献   

3.
Seven SGT organics dyes, containing bis‐dimethylfluoreneyl amino groups with a dialkoxyphenyl unit as an electron donor and a cyanoacrylic acid group as an anchoring group, connected with oligothiophenes, fused thiophenes and benzothiadiazoles as π‐bridges, were designed and synthesised for applications in dye‐sensitised solar cells (DSSCs). The photovoltaic performance of DSSCs based on organic dyes with oligothiophenes depends on the molecular structure of the dyes, in terms of the length change of the π‐bridging units. The best performance was found with a π‐bridge length of about 6 Å. To further enhance the photovoltaic performance associated with this concept, cyclopenta[1,2‐b:5,4‐b′]dithiophene (CPDT) and benzothiadiazole were introduced into the π‐bridge unit. As a result, the DSSC based on the organic dye containing the CPDT moiety showed the best photovoltaic performance with a short‐circuit photocurrent density (Jsc) of 14.1 mA cm?2, an open‐circuit voltage (Voc) of 0.84 V and a fill factor (FF) of 0.72, corresponding to an overall conversion efficiency (η) of 8.61 % under standard AM 1.5 irradiation.  相似文献   

4.
A triphosphaazatriangulene (H3L) was synthesized through an intramolecular triple phospha‐Friedel–Crafts reaction. The H3L triangulene contains three phosphinate groups and an extended π‐conjugated framework, which enables the stimuli‐responsive reversible transformation of [Cu(HL)(DMSO)?(MeOH)]n, a 3D‐MOF that exhibits reversible sorption characteristics, into (H3L?0.5 [Cu2(OH)4?6 H2O] ?4 H2O), a 1D‐columnar assembled proton‐conducting material. The hydrophilic nature of the latter resulted in a proton conductivity of 5.5×10?3 S cm?1 at 95 % relative humidity and 60 °C.  相似文献   

5.
Electron‐transporting organic semiconductors (n‐channel) for field‐effect transistors (FETs) that are processable in common organic solvents or exhibit air‐stable operation are rare. This investigation addresses both these challenges through rational molecular design and computational predictions of n‐channel FET air‐stability. A series of seven phenacyl–thiophene‐based materials are reported incorporating systematic variations in molecular structure and reduction potential. These compounds are as follows: 5,5′′′‐bis(perfluorophenylcarbonyl)‐2,2′:5′,‐ 2′′:5′′,2′′′‐quaterthiophene ( 1 ), 5,5′′′‐bis(phenacyl)‐2,2′:5′,2′′: 5′′,2′′′‐quaterthiophene ( 2 ), poly[5,5′′′‐(perfluorophenac‐2‐yl)‐4′,4′′‐dioctyl‐2,2′:5′,2′′:5′′,2′′′‐quaterthiophene) ( 3 ), 5,5′′′‐bis(perfluorophenacyl)‐4,4′′′‐dioctyl‐2,2′:5′,2′′:5′′,2′′′‐quaterthiophene ( 4 ), 2,7‐bis((5‐perfluorophenacyl)thiophen‐2‐yl)‐9,10‐phenanthrenequinone ( 5 ), 2,7‐bis[(5‐phenacyl)thiophen‐2‐yl]‐9,10‐phenanthrenequinone ( 6 ), and 2,7‐bis(thiophen‐2‐yl)‐9,10‐phenanthrenequinone, ( 7 ). Optical and electrochemical data reveal that phenacyl functionalization significantly depresses the LUMO energies, and introduction of the quinone fragment results in even greater LUMO stabilization. FET measurements reveal that the films of materials 1 , 3 , 5 , and 6 exhibit n‐channel activity. Notably, oligomer 1 exhibits one of the highest μe (up to ≈0.3 cm2 V?1 s?1) values reported to date for a solution‐cast organic semiconductor; one of the first n‐channel polymers, 3 , exhibits μe≈10?6 cm2 V?1 s?1 in spin‐cast films (μe=0.02 cm2 V?1 s?1 for drop‐cast 1 : 3 blend films); and rare air‐stable n‐channel material 5 exhibits n‐channel FET operation with μe=0.015 cm2 V?1 s?1, while maintaining a large Ion:off=106 for a period greater than one year in air. The crystal structures of 1 and 2 reveal close herringbone interplanar π‐stacking distances (3.50 and 3.43 Å, respectively), whereas the structure of the model quinone compound, 7 , exhibits 3.48 Å cofacial π‐stacking in a slipped, donor‐acceptor motif.  相似文献   

6.
X‐ray studies show that 1,3‐diphenyl‐7‐(thien‐2‐yl)‐1,4‐dihydro‐1,2,4‐benzotriazin‐4‐yl ( 6 ) adopts a distorted, slipped π‐stacked structure of centrosymmetric dimers with alternate short and long interplanar distances (3.48 and 3.52 Å). Cyclic voltammograms of 7‐(thien‐2‐yl)benzotriazin‐4‐yl 6 show two fully reversible waves that correspond to the ?1/0 and 0/+1 processes. EPR and DFT studies on radical 6 indicate that the spin density is mainly delocalized over the triazinyl fragment. Magnetic susceptibility measurements show that radical 6 obeys Curie–Weiss behavior in the 5–300 K region with C=0.378 emu K mol?1 and θ=+4.72 K, which is consistent with ferromagnetic interactions between S=1/2 radicals. Fitting the magnetic susceptibility revealed the behavior is consistent with an alternating ferromagnetic chain (g=2.0071, J1=+7.12 cm?1, J2=+1.28 cm?1).  相似文献   

7.
By alternating‐current electrochemical technique crystals of copper(I) π‐complex with 1‐allylpyridinium chloride of [C5H5N(C3H5)][Cu2Cl3] ( 1 ) composition have been obtained and structurally investigated. Compound 1 crystallizes in monoclinic system, space group C2/c a = 24.035(1) Å, b = 11.4870(9) Å, c = 7.8170(5) Å, β = 95.010(5)°, V = 2150.0(2) Å3 (at 100 K), Z = 8, R = 0.028, for 4836 independent reflections. In the structure 1 trigonal‐pyramidal environment of π‐coordinated copper(I) atom is formed by a lengthened to 1.376(2) Å C=C bond of allyl group and by three chlorine atoms. Other two copper atoms are tetrahedrally surrounded by chlorine atoms only. The coordination polyhedra are combined into an original infinite (Cu4Cl62—)n fragment. Structural comparison of 1 and the recently studied copper(I) chloride π‐complexes with 3‐amino‐, 2‐amino‐, 4‐amino‐1‐allylpyridinium chlorides of respective [LCu2Cl3] ( 2 ), [L2Cu2Cl4] ( 3 ), and [LCuCl2] ( 4 ) compositions allowed us to reveal the trend of the inorganic fragment complication which depends on pKa (base) value of the corresponding initial heterocycle.  相似文献   

8.
The 1:1 organic salt of the title compound, C7H6ClN2O+·C8H5Cl2O3? or [(2‐ABOX)(3,4‐D)], comprises the two constituent mol­ecules associated by an R22(8) graph‐set interaction through the carboxyl­ate group of 3,4‐D across the protonated N/N sites of 2‐ABOX [N?O 2.546 (3) and 2.795 (3) Å]. Cation/anion pairs associate across an inversion centre forming discrete tetramers via an additional three‐centre hydrogen‐bonding association from the latter N amino proton to a phenoxy O atom [N?O 3.176 (3) Å] and a carboxyl­ate O atom [N?O 2.841 (3) Å]. This formation differs from the polymeric hydrogen‐bonded chains previously observed for adduct structures of 2‐ABOX with carboxyl­ic acids.  相似文献   

9.
Crystals of the zwitterionic copper(I) π‐complex [(HC≡CCH2NH3)Cu2Br3] have been synthesized by interaction of CuBr with [HC≡CCH2NH3]Br in aqueous solution (pH < 1) and X‐ray studied. The crystals are monoclinic: space group P21/n, a = 6.722(4), b = 12.818(8), c = 9.907(3) Å, β = 100.25(4)°, V = 840.0(8) Å3, Z = 4, R = 0.0592 for 3015 reflections. The crystal structure of the π‐complex contains isolated [(HC≡CCH2NH3)+(Cu2Br3)?]2 units which are incorporated into a framework by strong hydrogen N–H···Br and C≡C–H···Br bonds. The length of π‐coordinated propargylammonium C≡C bond is equal 1.216(8) Å and Cu(I)–(C≡C) distance equals 1.958(5) Å.  相似文献   

10.
The title salt, C18H22N5+·Cl?, is a member of a new series of lipophilic 4,6‐di­amino spiro‐s‐triazines which are potent in­hib­itors of di­hydro­folate reductase. The protonated triazine ring deviates from planarity, whereas the cyclo­hexane ring adopts a chair conformation. A rather unusual hydrogen‐bonding scheme exists in the crystal. There is a centrosymmetric arrangement involving two amino groups and two triazine ring N atoms, with graph‐set R(8) and an N?N distance of 3.098 (3) Å, flanked by two additional R(8) systems, involving two amino groups, a triazine ring N atom and a Cl? anion, with N?Cl distances in the range 3.179 (2)–3.278 (2) Å. Furthermore, the Cl? anion, the protonated triazine ring N atom and an amino group form a hydrogen‐bonding system with graph‐set R(6).  相似文献   

11.
岳琦  杨进  袁宏明  陈接胜 《中国化学》2006,24(8):1045-1049
A two-coordinate copper(Ⅰ) complex, Cu2(bipy)(H2L)2 (1) (H3L=cyanuric acid, bipy=4,4'-bipyridyl), which exhibits strong photoluminescence, has been synthesized under hydrothermal conditions and structurally characterized by single crystal X-ray diffraction. The compound crystallizes in the monoclinic space group P21/n, with cell parameters: Mr= 539.42, a= 13.4806(5)A↑°, b=4.5234(2) A↑°, c= 15.4952(8)A↑°,β = 105.526(3)°, V=910.39(7)A↑°^3, Z=2 and μ=3.52 mm^ -1. In the structure the two Cu(Ⅰ) ions are bridged by bipy to form a two-coordinate copper(Ⅰ) dimer. The adjacent dimer units are connected by hydrogen bonding interactions, resulting in 1D zigzag chains along the c axis. 1 emits intense yellow light when excited with UV light.  相似文献   

12.
Herein, two new quadrupolar acceptor‐π‐donor‐π‐acceptor (A‐π‐D‐π‐A) chromophores have been prepared featuring a strongly electron‐donating diborene core and strongly electron‐accepting dimesitylboryl (BMes2) and bis(2,4,6‐tris(trifluoromethyl)phenyl)boryl (BFMes2) end groups. Analysis of the compounds by NMR spectroscopy, X‐ray crystallography, cyclic voltammetry, and UV/Vis‐NIR absorption and emission spectroscopy indicated that the compounds have extended conjugated π‐systems spanning their B4C8 cores. The combination of exceptionally potent π‐donor (diborene) and π‐acceptor (diarylboryl) groups, both based on trigonal boron, leads to very small HOMO–LUMO gaps, resulting in strong absorption in the near‐IR region with maxima in THF at 840 and 1092 nm and very high extinction coefficients of ca. 120 000 m ?1 cm?1. Both molecules also display weak near‐IR fluorescence with small Stokes shifts.  相似文献   

13.
Crystals of anionic Na[CuCl2(HOCH2C≡CCH2OH)]·2H2O π‐complex have been synthesized by interaction of 2‐butyne‐1,4‐diol with CuCl in a concentrated aqueous NaCl solution and characterized by X‐ray diffraction at 100 K. The crystals are triclinic: space group , a = 7.142(3), b = 7.703(3), c = 10.425(4) Å, α = 105.60(3), β = 99.49(3), γ = 110.43(3)°, V = 495.9(4) Å3, Z = 2, R = 0.0203 for 3496 reflections. The structure is built of discrete [CuCl2(HOCH2C≡CCH2OH)]? anionic stacks and polymeric cations among the stacks. The CuI atom adopts trigonal planar coordination of two Cl? anions and the C≡C bond of 2‐butyne‐1,4‐diol, Cu–(C≡C) distance is equal to 1.903(3) Å. Na+ cations environment is octahedral and consists of O and Cl atoms. The crystal packing is governed by strong hydrogen bonds of O–H···Cl and O–H···O types.  相似文献   

14.
This paper compares rates of charge transport by tunneling across junctions with the structures AgTSX(CH2)2nCH3 //Ga2O3 /EGaIn (n=1–8 and X= ? SCH2? and ? O2C? ); here AgTS is template‐stripped silver, and EGaIn is the eutectic alloy of gallium and indium. Its objective was to compare the tunneling decay coefficient (β, Å?1) and the injection current (J0, A cm?2) of the junctions comprising SAMs of n‐alkanethiolates and n‐alkanoates. Replacing AgTSSCH2‐R with AgTSO2C‐R (R=alkyl chains) had no significant influence on J0 (ca. 3×103 A cm?2) or β (0.75–0.79 Å?1)—an indication that such changes (both structural and electronic) in the AgTSXR interface do not influence the rate of charge transport. A comparison of junctions comprising oligo(phenylene)carboxylates and n‐alkanoates showed, as expected, that β for aliphatic (0.79 Å?1) and aromatic (0.60 Å?1) SAMs differed significantly.  相似文献   

15.
A new series of donor–bridge–acceptor (D–B–A) compounds consisting of π‐conjugated oligofluorene (oFL) bridges between a ferrocene (Fc) electron‐donor and a fullerene (C60) electron‐acceptor have been synthesized. In addition to varying the length of the bridge (i.e., mono‐ and bi‐fluorene derivatives), four different ways of linking ferrocene to the bridge have been examined. The Fc moiety is linked to oFL: 1) directly without any spacer, 2) by an ethynyl linkage, 3) by a vinylene linkage, and 4) by a p‐phenylene unit. The electronic interactions between the electroactive species have been characterized by cyclic voltammetry, absorption, fluorescence, and transient absorption spectroscopy in combination with quantum chemical calculations. The calculations reveal exceptionally close energy‐matching between the Fc and the oFL units, which results in strong electronic‐coupling. Hence, intramolecular charge‐transfer may easily occur upon exciting either the oFLs or Fcs. Photoexcitation of Fc–oFL–C60 conjugates results in transient radical‐ion‐pair states. The mode of linkage of the Fc and FL bridge has a profound effect on the photophysical properties. Whereas intramolecular charge‐separation is found to occur rather independently of the distance, the linker between Fc and oFL acts (at least in oFL) as a bottleneck and significantly impacts the intramolecular charge‐separation rates, resulting in beta values between βCS 0.08 and 0.19 Å?1. In contrast, charge recombination depends strongly on the electron‐donor–acceptor distance, but not at all on the linker. A value of βCR (0.35±0.01 Å?1) was found for all the systems studied. Oligofluorenes prove, therefore, to be excellent bridges for probing how small structural variations affect charge transport in D–B–A systems.  相似文献   

16.
A quinoidal small‐molecule semiconductor QDPPBTT was synthesized. Organic thin‐film transistor (OTFT) devices based on QDPPBTT showed an electron mobility as high as 0.13 cm2 V?1 s?1 and Ion/Ioff ratio of 106 under ambient conditions. We suggested that 2D extended π‐conjugation and quinoid‐enhancing effect had an important role in electron mobility and stability of n‐type FET devices, which might be a good strategy in designing new material systems.  相似文献   

17.
Two well‐defined alternating π‐conjugated polymers containing a soluble electroactive benzo[1,2‐b:4,5‐b′]difuran (BDF) chromophore, poly(BDF‐(9‐phenylcarbazole)) (PBDFC), and poly(BDF‐benzothiadiazole) (PBDFBTD) were synthesized via Sonogashira copolymerizations. Their optical, electrochemical, and field‐effect charge transport properties were characterized and compared with those of the corresponding homopolymer PBDF and random copolymers of the same overall composition. All these polymers cover broad optical absorption ranges from 250 to 750 nm with narrow optical band gaps of 1.78–2.35 eV. Both PBDF and PBDFBTD show ambipolar redox properties with HOMO levels of ?5.38 and ?5.09 eV, respectively. The field‐effect mobility of holes varies from 2.9 × 10?8 cm2 V?1 s?1 in PBDF to 1.0 × 10?5 cm2 V?1 s?1 in PBDFBTD. Bulk heterojunction solar cell devices were fabricated using the polymers as the electron donor and [6,6]‐phenyl‐C61‐butyric acid methyl ester as the electron acceptor, leading to power conversion efficiencies of 0.24–0.57% under air mass 1.5 illumination (100 mW cm?2). These results indicate that their band gaps, molecular electronic energy levels, charge mobilities, and molecular weights are readily tuned by copolymerizing the BDF core with different π‐conjugated units. © 2012 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem, 2012  相似文献   

18.
Assembly of Zn(NO3)2 with the tripodal ligand H3TCPB (1,3,5‐tri(4‐carboxyphenoxy)benzene) affords two porous isoreticular metal‐organic frameworks, [Zn3(TCPB)2?2DEF]? 3DEF ( 1 ) and [Zn3(TCPB)2?2H2O]? 2H2O?4DMF ( 2 ). Single‐crystal X‐ray diffraction analyses reveal that 1 crystallizes in the monoclinic space group P21/c and possesses a 2D network containing 1D microporous opening channels with an effective size of 3.0×2.9 Å2, whereas 2 crystallizes in the trigonal space group c1 and also possesses a 2D network containing 1D channels, with an effective aperture of 4.0×4.0 Å2. TOPOS analysis reveals that both 1 and 2 have a (3,6)‐connected network topology with the Schläfli symbol of (43?612) (43)2. According to the variable‐temperature powder X‐ray diffraction patterns, the solid phase of 1 can be converted into that of 2 during a temperature‐induced dynamic structural transformation, thus indicating that the framework of 2 represents the most thermally stable polymorph. Desolvated 2 exhibits highly selective adsorption behaviors toward H2/N2, CO2/N2, and CO2/CH4; furthermore, it displays size‐selective catalytic activity towards carbonyl cyanosilylation and Henry (nitroaldol) reactions.  相似文献   

19.
A soluble 4H‐cyclopenta[2,1‐b ;3,4‐b ′]dithiophene‐4‐one (CPDTO)‐based polymer (C6‐PCPDTO) has been synthesized from two monomers derived from nonalkylated CPDTO and didodecyl CPDTO (C12‐CPDTO). Proton NMR, thermal analysis, UV–vis absorption, cyclic voltammetry, and XRD are used to characterize the polymer in solution and film. The new polymer has an optical bandgap of 1.28 eV in film, and has strong interchain interaction in chloroform solutions. The polymer contains a significant amount of homocoupled segments. The regular segments and homocoupled CPDTO segments render the polymer highly aggregating in solution. The non‐planar homocoupled C12‐CPDTO segments prevent the polymer from forming regular π‐stacks, resulting in a low SCLC hole mobility (3.88 × 10?7 cm2V?1s?1). CV experiments show that C6‐PCPDTO is stable in its oxidized and reduced states. Solar cell devices were fabricated from C6‐PCPDTO2 :PC60BM blends of different weight ratios. High PC60BM loading (80% or greater) was required for the devices to show measurable efficiency, indicating that the limited π‐stacking of the polymer is not sufficient to cause effective phase separation. Further development of synthetic method is still needed to eliminate structural defects so that long‐range ordered pi‐stacking can be realized in the polymer for these applications. © 2017 Wiley Periodicals, Inc. J. Polym. Sci., Part A: Polym. Chem. 2017 , 55 , 1077–1085  相似文献   

20.
The crystal structure of a third polymorphic form of the known 4‐(2,6‐difluorophenyl)‐1,2,3,5‐dithiadiazolyl radical, C7H3F2N2S2, is reported. This new polymorph represents a unique crystal‐packing motif never before observed for 1,2,3,5‐dithiadiazolyl (DTDA) radicals. In the two known polymorphic forms of the title compound, all of the molecules form cis‐cofacial dimers, such that two molecules are π‐stacked with like atoms one on top of the other, a common arrangement for DTDA species. By contrast, the third polymorph, reported herein, contains two crystallographically unique molecules organized such that only 50% are dimerized, while the other 50% remain monomeric radicals. The dimerized molecules are arranged in the trans‐antarafacial mode. This less common dimer motif for DTDA species is characterized by π–π interactions between the S atoms [S...S = 3.208 (1) Å at 110 K], such that the two molecules of the dimer are related by a centre of inversion. The most remarkable aspect of this third polymorph is that the DTDA dimers are co‐packed with monomers. The monomeric radicals are arranged in one‐dimensional chains directed by close lateral intermolecular contacts between the two S atoms of one DTDA heterocycle and an N atom of a neighbouring coplanar DTDA heterocycle [S...N = 2.857 (2) and 3.147 (2) Å at 110 K].  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号