首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
A novel ZnS hierarchical structure composed of nanorod arrays with branched nanosheets and nanowires grown on their upside walls, was synthesized over Au-coated silicon substrate via chemical vapor deposition technique. Contact angle and sliding angle of this hierarchical film with no surface modification were measured to be about 153.8° and 9.1° for 5 μl water droplets. Self-cleaning behavior and dynamic water-repelling performance were clearly demonstrated. In addition, electrowetting transition phenomenon from superhydrophobic to hydrophilic state happened when a critical bias ∼7.0 V was applied. Below this threshold voltage, the contact angle change is little. This work for the first time reports the creation of ZnS superhydrophobic surface and could enrich its research field as surface functional materials.  相似文献   

2.
A combined process of oblique angle magnetron sputtering and anodizing has been developed to tailor superhydrophobic surfaces with hierarchical morphology. Isolated submicron columns of single-phase Al-Nb alloys are deposited by magnetron sputtering at several oblique deposition angles on a scalloped substrate surface, with the gaps between columns increasing with an increase in the deposition angle from 70° to 110°. Then, the columnar films have been anodized in hot phosphate-glycerol electrolyte to form a nanoporous anodic oxide layer on each column. Such surfaces with submicron-/nano-porous structure have been coated with a fluoroalkyl phosphate layer to reduce the surface energy. The porous surface before coating is superhydrophilic with a contact angle for water is less than 10°, while after coating the contact angles are larger than 150°, being superhydrophobic. The beneficial effect of dual-scale porosity to enhance the water repellency is found from the comparison of the contact angles of the submicron columnar films with and without nanoporous oxide layers. The larger submicron gaps between columns are also preferable to increase the water repellency.  相似文献   

3.
Wetting characteristics of micro-nanorough substrates of aluminum and smooth silicon substrates have been studied and compared by depositing hydrocarbon and fluorinated-hydrocarbon coatings via plasma enhanced chemical vapor deposition (PECVD) technique using a mixture of Ar, CH4 and C2F6 gases. The water contact angles on the hydrocarbon and fluorinated-hydrocarbon coatings deposited on silicon substrates were found to be 72° and 105°, respectively. However, the micro-nanorough aluminum substrates demonstrated superhydrophobic properties upon coatings with fluorinated-hydrocarbon providing a water contact angle of ∼165° and contact angle hysteresis below 2° with water drops rolling off from those surfaces while the same substrates showed contact angle of 135° with water drops sticking on those surfaces. The superhydrophobic properties is due to the high fluorine content in the fluorinated-hydrocarbon coatings of ∼36 at.%, as investigated by X-ray photoelectron spectroscopy (XPS), by lowering the surface energy of the micro-nanorough aluminum substrates.  相似文献   

4.
Fabrication of a superhydrophobic surface on a wood substrate   总被引:2,自引:0,他引:2  
A layer of lamellar superhydrophobic coating was fabricated on a wood surface through a wet chemical process. The superhydrophobic property of the wood surface was measured by contact angle (CA) measurements. The microstructure and chemical composition of the superhydrophobic coating were analyzed by scanning electron microscopy (SEM), X-ray diffraction (XRD) and Fourier transform infrared spectroscopy (FT-IR). An analytical characterization revealed that the microscale roughness of the lamellar particles was uniformly distributed on the wood surface and that a zinc stearate monolayer (with the hydrophobic groups oriented outward) formed on the ZnO surface as the result of the reaction between stearic acid and ZnO. This process transformed the wood surface from hydrophilic to superhydrophobic: the water contact angle of the surface was 151°, and the sliding angle was less than 5°.  相似文献   

5.
Electrochemical deposition method was employed to fabricate ZnO nanorods on zinc foil substrate in this paper. The structural observations of ZnO nanorods with different aspect ratios were carried out by field-emission scanning electron microscopy. The microstructures of ZnO nanorods were also characterized by X-ray diffraction and the changes in surface hydroxyls with electrochemical deposition time were analyzed by X-ray photoelectron spectroscopy. The study results show the aspect ratios of ZnO nanorods and the density of their surface hydroxyls are responsible for their superhydrophobicity. The fluorinated polymer coated ZnO nanorods showed an excellent superhydrophobic behavior with 167° contact angle of water droplet, which is larger than that of fluorinated polymer flat surface. The more the surface hydroxyls are, the more hydrophilic the surfaces are. Meanwhile, the larger the aspect ratio of ZnO nanorod arrays is, the larger its drophobicity is. The results of this study might pave a simple and feasibility pathway to the fabrication of superhydrophobic cleaning materials used in engineering fields.  相似文献   

6.
Superhydrophobic wood surfaces were fabricated from potassium methyl siliconate (PMS) through a convenient solution-immersion method. The reaction involves a hydrogen bond assembly and a polycondensation process. The silanol was formed by reacting PMS aqueous solution with CO2, which was assembled on the wood surface via hydrogen bonds with the wood surface -OH groups. The polymethylsilsesquioxane coating was obtained through the polycondensation reaction of the hydroxyl between wood and silanol. The morphology of products were characterized using a scanning electron microscope (SEM), the surface chemical composition was determined using energy dispersive X-ray analysis (EDXA), Fourier transform infrared spectroscopy (FT-IR), thermogravimetry (TGA) and contact angle measurement. Analytical results revealed that rough protuberances uniformly covered the wood surface, thus transforming the wood surface from hydrophilic to superhydrophobic. The water contact angle of the superhydrophobic wood surface was about 153° and a sliding angle was 4.6°.  相似文献   

7.
Fabrication of superhydrophobic wood surface by a sol-gel process   总被引:3,自引:0,他引:3  
The superhydrophobic wood surface was fabricated via a sol-gel process followed by a fluorination treatment of 1H, 1H, 2H, 2H- perfluoroalkyltriethoxysilanes (POTS) reagent. The crystallization type of silica nanoparticles on wood surface was characterized using X-ray diffraction (XRD), the microstructure and chemical composition of the superhydrophobic wood surface were described by scanning electron microscope (SEM) and energy dispersive spectrometer (EDS), the bonding force between the silica nanoparticles and POTS reagent was analyzed by Fourier transform infrared spectroscopy (FT-IR) and the superhydrophobic property of the treated sample was measured by contact angle (CA) measurements. An analytical characterization revealed that nanoscale silica spheres stacked uniformly over the wood surface, and with the combination of the high surface roughness of silica nanoparticles and the low surface free energy film of POTS on wood surface, the wood surface has turned its wetting property from hydrophilic into superhydrophobic with a water contact angle of 164° and sliding angle less than 3°.  相似文献   

8.
Superhydrophobic polytetrafluoroethylene (PTFE) thin films were obtained by pulsed laser deposition (PLD) technique carried out with KrF excimer laser (λ = 248 nm) of about 1 J/cm2 at a pressure of 1.33 Pa. The samples exhibit high water contact angle of about 170° and the sliding angle smaller than 2°. From studying the surface morphology of the prepared films, it is believed that the nano-scale surface roughness has enhanced the hydrophobic property of the PTFE. The increase of trapping air and reducing liquid-solid contact area due to the rough surface, as suggested by the Cassie-Baxter's model, should be responsible for superhydrophobicity of the PLD prepared films. This study thus provides a convenient one-step method without using wet-process to produce a superhydrophobic surface with good self-cleaning properties.  相似文献   

9.
Due to the chemical stability and flexibility, polyvinylidene fluoride (PVDF) membranes are widely used as the topcoat of architectural membrane structures, roof materials of vehicle, tent fabrics, and so on. Further modified PVDF membrane with superhydrophobic property may be even superior as the coating layer surface. The lotus flower is always considered to be a sacred plant, which can protect itself against water, dirt, and dust. The superhydrophobic surface of lotus leaf is rough, showing the micro- and nanometer scale morphology. In this work, the microreliefs of lotus leaf were mimicked using PVDF membrane and the nanometer scale peaks on the top of the microreliefs were obtained by the method of chemical vapor deposition from solution. The surface morphology of PVDF membrane was investigated by scanning electronic microscopy (SEM) and atomic force microscope (AFM). Elemental composition analysis by X-ray photoelectron spectroscopy (XPS) revealed that the material of the nanostructure of PVDF membrane was polymethylsiloxane. On the lotus-leaf-like PVDF membrane, the water contact angle and sliding angle were 155° and 4°, respectively, exhibiting superhydrophobic property.  相似文献   

10.
Water condensation, a complex and challenging process, is investigated on a metallic (Zn) surface, regularly used as anticorrosive surface. The Zn surface is coated with hydroxide zinc carbonate by chemical bath deposition, a very simple, low-cost and easily applicable process. As the deposition time increases, the surface roughness augments and the contact angle with water can be varied from 75° to 150°, corresponding to changing the surface properties from hydrophobic to ultrahydrophobic and superhydrophobic. During the condensation process, the droplet growth laws and surface coverage are found similar to what is found on smooth surfaces, with a transition from Cassie-Baxter to Wenzel wetting states at long times. In particular, it is noticeable in view of corrosion effects that the water surface coverage remains on order of 55%.  相似文献   

11.
A facile approach to manipulate the hydrophobicity of surface by controlled growth of standing Ag nanorod arrays is presented. Instead of following the complicated conventional method of the template-assisted growth, the morphology or particularly average diameter and number density (nanorods cm?2) of nanorods were controlled on bare Si substrate by simply varying the deposition rate during glancing angle deposition. The contact angle measurements showed that the evolution of Ag nanorods reduces the surface energy and makes an increment in the apparent water contact angle compared to the plain Ag thin film. The contact angle was found to increase for the Ag nanorod samples grown at lower deposition rates. Interestingly, the morphology of the nanorod arrays grown at very low deposition rate (1.2 Å?sec?1) results in a self-cleaning superhydrophobic surface of contact angle about 157° and a small roll-off angle about 5°. The observed improvement in hydrophobicity with change in the morphology of nanorod arrays is explained as the effect of reduction in solid fraction within the framework of Cassie–Baxter model. These self-cleaning Ag nanorod arrays could have a significant impact in wide range of applications such as anti-icing coatings, sensors and solar panels.  相似文献   

12.
Vertically aligned carbon nanotube (CNT) arrays have been grown onto the carbon fiber fabric using a catalytic chemical vapor deposition (CCVD) method. The as-synthesized CNT arrays are about 20 μm in height, and the nanotube has a mean inner and outer diameter of 2.6 nm, 5.5 nm, respectively. The CNT-grafted carbon fabric shows a hydrophobic property with a contact angle over 145°, and the single CNT-grafted carbon fiber shows a sharp increase of dynamic contact angle in de-ionized water from original 71.70° to about 103°, but a little increase does in diiodomethane or E-51 epoxy resin. However, the total surface energy of carbon nanotube-grafted carbon fiber is almost as same as that of as-received carbon fiber. After CNTs growth, single fiber tensile tests indicated a slight tensile strength degradation within 10% for all different lengths of fibers, while the fiber modulus has not been significantly damaged. Compared with the as-received carbon fibers, a nearly 110% increase of interfacial shear strength (IFSS) from 65 to 135 MPa has been identified by single fiber pull-out tests for the micro-droplet composite, which is reinforced by as-received carbon fiber or CNT-grafted carbon fiber.  相似文献   

13.
Stable superhydrophobic surfaces were fabricated on the zinc substrates through simple silver replacement deposition process with the modification of octadecyl mercaptan. The effects of reaction conditions on the surface morphology and wettability of the prepared surfaces were carefully studied. The results show that the fabrication of a best superhydrophobic surface depends largely on the moderate reactant concentration. When the concentration of AgNO3 solution was 2 mmol/L, the zinc substrate was covered by a dendritic outline structure. Aggregated silver nanoparticles were formed on the substrate in accordance with some certain laws, exhibiting great surface roughness. The typical hierarchical micro-nanostructures, flower-like structures and porous structures also could be found from the SEM images. The maximal water contact angle (CA) value of about 161 ± 2°, and the minimal sliding angle (SA) of about 2° were obtained under the same reaction condition.  相似文献   

14.
Based on the lotus effect principle, the superhydrophobic poly(vinylidene fluoride) (PVDF) film was successfully prepared by the method of alkali treatment enhancing chemical bath deposition. The surface of PVDF film prepared in this work was constructed by many smooth and regular microreliefs. Oxygen-containing functional groups were introduced in PVDF film by treatment with aqueous NaOH solution. The nano-scale peaks on the top of the microreliefs were implemented by the reaction between dimethyldichlorosilane/methyltrichlorosilane solution and the oxygen-containing functional groups of PVDF film. The micro- and nano-scale structures, similar to the lotus leaf, was clearly observed on PVDF film surface by scanning electronic microscopy (SEM) and atomic force microscope (AFM). The water contact angle and sliding angle on the fabricated lotus-leaf-like PVDF film surface were 157° and 1°, respectively, exhibiting superhydrophobic property and self-cleaning property.  相似文献   

15.
A superhydrophobic surface was obtained by combining application of CaCO3/SiO2 mulberry-like composite particles, which originated from violent stirring and surface modification, and self-assembly of polydimethylsiloxane. Water contact angle and sliding angle of the superhydrophobic surface were measured to be about 164 ± 2.5° and 5°, respectively. The excellent hydrophobicity is attributed to the synergistic effect of micro-submicro-nano-meter scale roughness (fabricated by composite particles) and the low surface energy (provided by polydimethylsiloxane). This procedure makes it possible for widespread applications of superhydrophobic film due to its simplicity and practicability.  相似文献   

16.
The lotus-leaf-like superhydrophobic copper was fabricated by a facile two-step method without the chemical modification, on which the water contact angle can reach 158° and the water-sliding angle is less than 10°. Reversible superhydrophobicity to superhydrophilicity transition was observed and controlled by alternation of UV irradiation and dark storage. More interestingly, the superhydrophobic surface exhibits superoleophilicity and all those properties can be well used in reversible switch, separating the water and oil and so on.  相似文献   

17.
Stable superhydrophobic surfaces have been effectively fabricated on the zinc substrates through one-step platinum replacement deposition process without the further modification or any other post processing procedures. The effect of reaction temperatures on the surface morphology and wettability was studied by using SEM and water contact angle (CA) analysis. Under room temperature, the composite structure formed on the zinc substrate was consisted of microscale hexagonal cavities, densely packed nanoparticles layer and micro/nanoscale structures like the flowers. The structure has exhibited great surface roughness and porosity contributing to the superhydrophobicity where the contact angle could reach an ultra high value of around 170°. Under reaction temperature of 80 °C, the composite structure, on the other hand, was hierarchical structure containing lots of nanoscale flowers and some large bushes and showed certain surface roughness (maximum CA value of about 150°). In addition, an optimal superhydrophobic platinum surface was able to provide an effective anticorrosive coating to the zinc substrate when it was immersed into an aqueous solution of sodium chloride (3% NaCl) for up to 20 days. The corrosion process was monitored through electrochemical means and the results are compared with those of unprotected zinc plates.  相似文献   

18.
Development of the anticorrosion coatings on metals having both passive matrix functionality and active response to changes in the aggressive environment has raised tremendous interest in material science. Using a sol-gel deposition method, superhydrophobic copper substrate could be obtained. The best hydrophobic coating sol was prepared with methyltriethoxysilane (MTES), methanol (MeOH), and water (as 7 M NH4OH) at a molar ratio of 1:19.1:4.31 respectively. The surface morphological study showed the ball like silica particles distributed on the copper substrate with particle sizes ranging from 8 to 12 μm. The coatings showed the static water contact angle as high as 155° and the water sliding angle as low as 7°. The superhydrophobic nature was maintained even though the deposited copper substrate was soaked for 100 h in 50% of HCl solution. The coatings are stable against humidity and showed superhydrophobic behavior even after 90 days of exposure. The coatings are mechanically stable and water drops maintained the spherical shape on the bent copper substrate, which was bent more than 90°.  相似文献   

19.
Wetting behavior of solid surfaces is a key concern in our daily life as well as in engineering and science. In the present study, we demonstrate a simple dip coating method for the preparation of Thermally stable, transparent superhydrophobic silica films on glass substrates at room temperature by sol-gel process. The coating alcosol was prepared by keeping the molar ratio of methyltriethoxysilane (MTES), trimethylmethoxysilane (TMMS), methanol (MeOH), water (H2O) constant at 1:0.09:12.71:3.58, respectively with 13 M NH4OH throughout the experiments and the films were prepared with different deposition time varied from 5 to 25 h. In order to improve the hydrophobicity of as deposited silica films, the films were derivatized with 10% trimethylchlorosilane (TMCS) as a silylating agent in hexane solvent for 24 h. Enhancement in wetting behavior was observed for surface derivatized silica films which showed a maximum static water contact angle (172°) and minimum sliding angle (2°) for 25 h of deposition time. The superhydrophobic silica films retained their superhydrophobicity up to a temperature of 550 °C. The silica films were characterized by field emission scanning electron microscopy (FE-SEM), surface profilometer, Fourier transform infrared (FT-IR) spectroscopy, thermo-gravimetric and differential thermal analysis (TG-DTA), percentage of optical transmission, water contact angle measurements. The imperviousness behavior of the films was tested with various acids.  相似文献   

20.
Micropatterned ZnO was synthesized by an electroless deposition process using Au stripes as catalytic surfaces. The Au‐patterned electrodes were prepared on SiO2/Si wafers using photolithography. The site‐selective deposition of patterned ZnO hexagonal rod arrays is confirmed by scanning electron microscopy. The ZnO micropatterned surface revealed a conversion of wettability from hydrophilic to superhydrophobic depending on the deposition reaction param‐ eters. The electrical measurements carried out at room temperature before and after exposure to ammonia vapors of the patterned ZnO arrays show a resistance variation with exposure time. Highly reproducible, easy scalable and low‐cost, photolithography and electroless deposition techniques could provide a facile approach to fabricate functionalized micropatterns, for a wide range of applications. (© 2014 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号