首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Based on the lotus effect principle, the superhydrophobic poly(vinylidene fluoride) (PVDF) film was successfully prepared by the method of alkali treatment enhancing chemical bath deposition. The surface of PVDF film prepared in this work was constructed by many smooth and regular microreliefs. Oxygen-containing functional groups were introduced in PVDF film by treatment with aqueous NaOH solution. The nano-scale peaks on the top of the microreliefs were implemented by the reaction between dimethyldichlorosilane/methyltrichlorosilane solution and the oxygen-containing functional groups of PVDF film. The micro- and nano-scale structures, similar to the lotus leaf, was clearly observed on PVDF film surface by scanning electronic microscopy (SEM) and atomic force microscope (AFM). The water contact angle and sliding angle on the fabricated lotus-leaf-like PVDF film surface were 157° and 1°, respectively, exhibiting superhydrophobic property and self-cleaning property.  相似文献   

2.
Styrene and 2,2,3,4,4,4-hexafluorobutyl methacrylate copolymers were synthesized by bulk polymerization, and the superhydrophobic copolymer films were prepared subsequently using phase separation technique. The copolymer was dissolved in tetrahydrofuran, and then added ethanol into the solution thereafter, to induce phase separation. The microstructures of the polymer films were controlled by the degree of phase separation, which was enhanced properly by the concentration of ethanol. The surface morphology of the films, observed by environmental scanning electron microscope, is similar to that of the lotus leaf. The contact angle and sliding angle were measured as 154.3° and 5.8°, respectively. The excellent superhydrophobic property demonstrated that the phase separation technique is useful for preparing lotus-like fluoropolymer films.  相似文献   

3.
Highly stable gold micro-nanostructures with various morphologies were fabricated using a galvanic exchange reaction under different conditions, such as, concentration of gold salt, illumination, solution temperature, ultrasonication, or addition of surfactants. After modification of the gold films with n-dodecanethiol, superhydrophobic surface (contact angle 165°) similar to the lotus leaf was obtained. In addition, the mechanism for superhydrophobic property was discussed.  相似文献   

4.
Samples of wind turbine blade surface have been covered with a superhydrophobic coating made of silica nanoparticles embedded in commercial epoxy paint. The superhydrophobic surfaces have a water contact angle around 152°, a hysteresis less than 2° and a water drop sliding angle around 0.5°. These surfaces are water repellent so that water drops cannot remain motionless on the surface. Examination of coated and uncoated surfaces with scanning electron microscopy and atomic force microscopy, together with measurements of water contact angles, indicates that the air trapped in the cavity enhances the water repellency similarly to the lotus leaf effect. Moreover, this new coating is stable under UVC irradiation and water pouring. The production of this nanoscale coating film being simple and low cost, it can be considered as a suitable candidate for water protection of different outdoor structures.  相似文献   

5.
To mimic the lotus leaf structure, micro- and nanometer honeycomb-like porous hierarchical microstructures were constructed on the Al2024 alloy surface in which the average diameter of micro-pores was ca. 10 μm while those of nano-pores varied from 200 to 300 nm. Super-hydrophobicity was achieved with a water contact angle of 158° and the sliding angle of 4° by modifying the textured surface with HFTHTMS (HFTHTMS = (heptadecafluoro-1,1,2,2-tetrahydrodecyl) trimethoxysilane).  相似文献   

6.
Fabrication of a superhydrophobic surface on a wood substrate   总被引:2,自引:0,他引:2  
A layer of lamellar superhydrophobic coating was fabricated on a wood surface through a wet chemical process. The superhydrophobic property of the wood surface was measured by contact angle (CA) measurements. The microstructure and chemical composition of the superhydrophobic coating were analyzed by scanning electron microscopy (SEM), X-ray diffraction (XRD) and Fourier transform infrared spectroscopy (FT-IR). An analytical characterization revealed that the microscale roughness of the lamellar particles was uniformly distributed on the wood surface and that a zinc stearate monolayer (with the hydrophobic groups oriented outward) formed on the ZnO surface as the result of the reaction between stearic acid and ZnO. This process transformed the wood surface from hydrophilic to superhydrophobic: the water contact angle of the surface was 151°, and the sliding angle was less than 5°.  相似文献   

7.
A superhydrophobic surface was obtained by embedding hydrophobically modified fumed silica (HMFS) particles in polyvinylidene fluoride (PVDF) matrix. The water contact angle (WCA) on the PVDF-HMFS hybrid composite coating is influenced by the content and nature of silica particles in the coating. As the silica concentration in PVDF matrix was increased from 33.3% to 71.4%, WCA increased from 117° to 168° and the sliding angle decreased from 90° to <1°. Surface topography of the coating was examined using scanning electron microscopy. An irregular rough surface structure composed of microcavities and nanofilaments was found to be responsible for the superhydrophobicity. The method is simple and cost-effective and can be used for preparing self-cleaning superhydrophobic coating on large areas of different substrates.  相似文献   

8.
Fabrication of superhydrophobic wood surface by a sol-gel process   总被引:3,自引:0,他引:3  
The superhydrophobic wood surface was fabricated via a sol-gel process followed by a fluorination treatment of 1H, 1H, 2H, 2H- perfluoroalkyltriethoxysilanes (POTS) reagent. The crystallization type of silica nanoparticles on wood surface was characterized using X-ray diffraction (XRD), the microstructure and chemical composition of the superhydrophobic wood surface were described by scanning electron microscope (SEM) and energy dispersive spectrometer (EDS), the bonding force between the silica nanoparticles and POTS reagent was analyzed by Fourier transform infrared spectroscopy (FT-IR) and the superhydrophobic property of the treated sample was measured by contact angle (CA) measurements. An analytical characterization revealed that nanoscale silica spheres stacked uniformly over the wood surface, and with the combination of the high surface roughness of silica nanoparticles and the low surface free energy film of POTS on wood surface, the wood surface has turned its wetting property from hydrophilic into superhydrophobic with a water contact angle of 164° and sliding angle less than 3°.  相似文献   

9.
Fluorinated silane functionalized poly(vinylidene fluoride) (PVDF) is synthesized by graft polymerization of 3-trimethoxylpropyl methylacrylate with PVDF followed by coupling of fluorinated silanes. Flat membrane prepared using this functionalized PVDF has a water contact angle of 140°. Superhydrophobic PVDF membrane with a contact angle larger than 150° is prepared by the electrospinning of the fluorinated silane functionalized PVDF. The morphologies of the membranes are characterized using scanning electron microscopy. The surface composition of the membranes is analyzed using FTIR and the contact angles and water drops on the surface of the membrane are measured using video microscopy.  相似文献   

10.
Superhydrophobic wood surfaces were fabricated from potassium methyl siliconate (PMS) through a convenient solution-immersion method. The reaction involves a hydrogen bond assembly and a polycondensation process. The silanol was formed by reacting PMS aqueous solution with CO2, which was assembled on the wood surface via hydrogen bonds with the wood surface -OH groups. The polymethylsilsesquioxane coating was obtained through the polycondensation reaction of the hydroxyl between wood and silanol. The morphology of products were characterized using a scanning electron microscope (SEM), the surface chemical composition was determined using energy dispersive X-ray analysis (EDXA), Fourier transform infrared spectroscopy (FT-IR), thermogravimetry (TGA) and contact angle measurement. Analytical results revealed that rough protuberances uniformly covered the wood surface, thus transforming the wood surface from hydrophilic to superhydrophobic. The water contact angle of the superhydrophobic wood surface was about 153° and a sliding angle was 4.6°.  相似文献   

11.
According to the reformed Cassie-Baxter equation, the superhydrophobic phenylenebenzobisoxazole (PBO) fiber bundle boats were fabricated from mimicking the lotus leaf venation using chemical surface modifications and roughness introduction. Water contact angles as high as 152.3° were achieved for PBO fiber bundles. Furthermore, the loading capacities of the superhydrophobic PBO fiber bundle boats were also measured. And the highest loading weight, 8.36 g, was obtained by the boats treated with 2.0 wt.% (heptadecafluoro-1,1,2,2,-tetradecyl)trimethoxysilane (HFTES). The large loading capacities were believed to arise from the air film surrounding the superhydrophobic surfaces of boats. The results of this study presented new applications of artificial hydrophobic surfaces in areas of miniature aquatic devices.  相似文献   

12.
Hierarchical micrometer-nanometer-scale binary rough structures were fabricated on copper substrates by electrochemical machining in a neutral NaCl electrolyte. The rough structures are composed of the micrometer scale potato-like structures and the nanometer scale cube-like structures. After modified by the fluoroalkylsilane, the copper surfaces reached superhydrophobicity with a water contact angle of 164.3° and a water tilting angle less than 9°. This method has a high processing efficiency which can take just 3 s to fabricate the roughness required by the superhydrophobic surface. The effect of the processing time on wettability of the copper surfaces was investigated in this paper. The possible mechanism of the formation of the hierarchical roughness was also proposed, and the wettability of the copper surfaces was discussed on the basis of the Cassie-Baxter theory.  相似文献   

13.
According to the reformed Cassie-Baxter equation, a superhydrophobic quartz fiber bundle boat was fabricated from mimicking the lotus leaf venation using chemical surface modifications and roughness introductions. Water contact angles as high as 165.8° were achieved for quartz fiber cloths. The loading capacities of the miniature boats made from the superhydrophobic quartz fiber bundles were measured. The highest loading weight, 10.19 g, was obtained by the boats with 2.0 mm spacing distance between fiber bundles. The striking loading capacities were believed to stem from the air film surrounding the superhydrophobic surfaces of the boats. The results of this study presented new applications of artificial hydrophobic surfaces in areas of aquatic devices.  相似文献   

14.
A superhydrophobic polyaniline (PANI) film has been fabricated by using a facile one-step spraying method. The PANI was synthesized via in situ doping polymerization in the presence of perfluorooctanoic acid (PFOA) as the dopant. The water contact angle of this superhydrophobic surface reaches to 156°. Both the surface chemical compositions and morphological structures were analyzed. A granular morphology of PANI with a moderate amount of nanofibers was obtained. Moreover, a rapid surface wettability transition between superhydrophobicity and superhydrophilicity can be observed when it is doped with PFOA and de-doped with base. The mechanism for this tunable wettability has been discussed in detail.  相似文献   

15.
Inspired by the lotus leaf, a new superhydrophobic surface with hierarchical mesh-porous structure is fabricated by femtosecond laser irradiation on silicon. The fabricated surface shows a superhydrophobic character with water contact angle being found to reach up to 158°±1° and sliding angle of 4°±0.5°. The superhydrophobicity is stable even if the PH of solution changes from 1 to 14. And the surface also exhibits excellent self-cleaning effect and bouncing behavior, implying that the adhesion of the surface is extremely low. This work will enhance further understanding of the wettability of a solid surface with special surface morphology.  相似文献   

16.
Superhydrophobic thin films were prepared on glass by air-brushing the in situ polymerization compositions of D5/SiO2. The wettability and morphology were investigated by contact angle measurement and scanning electron microscopy. The most superhydrophobic samples prepared had a static water contact angle of 157° for a 5 μl droplet and a sliding angle of ∼1° for 10 μl droplet. Thermal stability analysis showed that the surface maintained superhydrophobic at temperature up to 450 °C. Air trapping and capillary force on superhydrophobic behavior were evaluated.  相似文献   

17.
Yan Zhao 《Applied Surface Science》2010,256(22):6736-9531
Highly hydrophilic cotton fabrics were rendered superhydrophobic via electrostatic layer-by-layer assembly of polyelectrolyte/silica nanoparticle multilayers on cotton fibers, followed with a fluoroalkylsilane treatment. The surface morphology of the silica nanoparticle-coated fibers, which results in the variety of the hydrophobicity, can be tailored by controlling the multilayer number. Although with the static contact angle larger than 150°, in the case of 1 or 3 multilayers, the fabrics showed sticky property with a high contact angle hysteresis (>45°). For the cotton fabrics assembled with 5 multilayers or more, slippery superhydrophobicity with a contact angle hysteresis lower than 10° was achieved. The buoyancy of the superhydrophobic fabric was examined by using a miniature boat made with the fabric. The superhydrophobic fabric boat exhibited a remarkable loading capacity; for a boat with a volume of 8.0 cm3, the maximum loading was 11.6 or 12.2 g when the boat weight is included. Moreover, the superhydrophobic cotton fabric showed a reasonable durability to withstand at least 30 machine washing cycles.  相似文献   

18.
The lotus-leaf-like superhydrophobic copper was fabricated by a facile two-step method without the chemical modification, on which the water contact angle can reach 158° and the water-sliding angle is less than 10°. Reversible superhydrophobicity to superhydrophilicity transition was observed and controlled by alternation of UV irradiation and dark storage. More interestingly, the superhydrophobic surface exhibits superoleophilicity and all those properties can be well used in reversible switch, separating the water and oil and so on.  相似文献   

19.
A lotus-effect coating was fabricated by wrapping micro-silica and nano-silica with polyurethane (PU) and subsequent spraying. The coating shows the similar self-cleaning property as lotus leaves: the contact angle is as large as 168° and the sliding angle is as low as 0.5°. Surface morphology of the coating was studied with scanning electron microscopy and atomic force microscopy. The composite coating shows the similar structure as lotus leaves.  相似文献   

20.
Superhydrophobic polytetrafluoroethylene (PTFE) thin films were obtained by pulsed laser deposition (PLD) technique carried out with KrF excimer laser (λ = 248 nm) of about 1 J/cm2 at a pressure of 1.33 Pa. The samples exhibit high water contact angle of about 170° and the sliding angle smaller than 2°. From studying the surface morphology of the prepared films, it is believed that the nano-scale surface roughness has enhanced the hydrophobic property of the PTFE. The increase of trapping air and reducing liquid-solid contact area due to the rough surface, as suggested by the Cassie-Baxter's model, should be responsible for superhydrophobicity of the PLD prepared films. This study thus provides a convenient one-step method without using wet-process to produce a superhydrophobic surface with good self-cleaning properties.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号