首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Laser cladding of in situ TiB2/Fe composite coating on steel   总被引:1,自引:0,他引:1  
To enhance the wear resistance of mechanical components, laser cladding has been applied to deposit in situ TiB2/Fe composite coating on steel using ferrotitanium and ferroboron as the coating precursor. The phase constituents and microstructure of the composite coating were investigated using X-ray diffraction (XRD), scanning electron micrograph (SEM) and electron probe microanalysis (EPMA). Microhardness tester and block-on-ring wear tester were employed to measure the microhardness and dry-sliding wear resistance of the composite coating. Results show that defect-free composite coating with metallurgical joint to the steel substrate can be obtained. Phases presented in the coating consist of TiB2 and α-Fe. TiB2 particles which are formed in situ via nucleation-growth mechanism are distributed uniformly in the α-Fe matrix with blocky morphology. The microhardness and wear properties of the composite coating improved significantly in comparison to the as-received steel substrate due to the presence of the hard reinforcement TiB2.  相似文献   

2.
Wear resistance of reactive plasma sprayed TiB2-TiC0.3N0.7 based composite coatings and the as-sprayed coating with laser surface treatment was investigated using plate-on-plate tests. Wear tests were performed at different normal loads and sliding speeds under dry sliding conditions in air. The surface morphologies of counterparts against as-sprayed and laser remelted coatings were investigated. The microstructure and chemical composition of wear debris and coatings were studied using scanning electron microscopy (SEM) and energy dispersive X-ray spectroscopy (EDS), respectively. The results show that the wear resistance of the laser remelted coating is improved significantly due to their increased microhardness and reduced flaws. The primary wear mechanism of the remelted coating is oxidation wear and its minor wear mechanisms are grain abrasion and fatigue failure during the course of wear test. In contrast, the primary wear mechanism of the as-sprayed coating is grain abrasion at the low sliding speed (370 rpm) and fatigue failure at the high sliding speed (549 rpm). The oxidation wear mechanism is a minor contributor for the as-sprayed coating.  相似文献   

3.
Three kinds of laser boronizing composite coatings were in situ synthesized on Ti substrate by using powders of B, BN and B4C as starting materials. Microstructures of the laser boronizing composite coatings were investigated by means of X-ray diffraction (XRD), scanning electron microscopy (SEM) and high-resolution transmission electron microscopy (HRTEM); and their worn surface morphologies were also observed by using SEM. Moreover, the friction and wear behavior of the boronizing composite coatings under dry sliding condition were evaluated using a UMT-2MT friction and wear tester. It was found that all the three types of laser boronizing composite coatings had higher microhardness and better wear resistance than pure Ti substrate; and their microstructure and wear resistance varied with varying pre-placed powders of B, BN, and B4C. Under the same dry sliding test conditions, the wear resistance of the three kinds of laser boronizing composite coatings, i.e., sample 1 prepared from pre-placed B, sample 2 obtained from pre-placed BN, and sample 3 fabricated from pre-placed B4C, is ranked in an order of sample 1 > sample 2 > sample 3, which, surprisingly, well conforms to their order of hardness and friction coefficients.  相似文献   

4.
利用SHS等离子喷涂技术,将经过机械团聚法制备的Fe2O3-Al复合粉体送入等离子焰流,沉积出厚度约为400 μm的复合涂层.利用XRD,SEM 和TEM等检测手段对涂层的成分和组织进行了分析,测定了涂层的显微硬度、断裂韧性以及耐磨性.结果表明涂层为具有纳米结构的FeAl2O4-Al2O3-Fe纳米复合组织;涂层的显微硬度为HV100g870;断裂韧性是普通Al2O3涂层的2倍;无润滑磨损的耐磨性是普通Al2O3涂层的2.5倍. 关键词: SHS等离子喷涂 纳米涂层 断裂韧性  相似文献   

5.
Through addition of Tantalum, fine TaC particles were in situ synthesized in a NiCrBSi alloy laser clad composite coating. Microstructure, microhardness and abrasive wear resistance of the composite coating were investigated. The result showed that TaC particles were dispersed in Ni based alloy composite coating, refining the microstructure of the coating after laser cladding. Amount of coarse primary carbides such as M7C3 and eutectic of γ-Ni + M23C6 substantially decreased because the formation of TaC particles suppressed the formation of M7C3 and M23C6. On the one hand, fine TaC particles acted as hard phase, which improved the microhardness of the composite coating; on the other hand, a decrease in amount of the coarse M7C3 and eutectic of γ-Ni + M23C6 reduced the crack susceptibility of the Ni based composite coating. Also, Ta element improved the abrasive wear resistance of the Ni based coating.  相似文献   

6.
The carck-free Fe-based +20 wt% WC coating with large area was produced by mutli-track overlapping laser induction hybrid rapid cladding. The results showed that the maximum laser scanning speed and the maximum feeding rate of powder can be increased to 3500 mm/min and 120 g/min, respectively. The cast WC particles were dissolved almost completely and had a worse wettability with Fe-based metal matrix. The precipitated carbides such as M12C and M23C6 (M=Fe, W, Cr) formed an intergranular network around the primary Fe-based phase enriched with tungsten. The microhardness of coating decreased first, and then increased slightly with an increase in the track. The first track had the highest microhardness (i.e. 870HV0.2). Moreover, the wear weight of coating approximately had a linear relationship with the sliding distance, and increased with an increase in the sliding speed. The wear rate approximately remained constant with an increase in the sliding distance and was two times lower than that of the hardened steel AISI 1045 with a hardness of 60HRC. The wear mechanism during the dry sliding wear was a combination of oxidation wear and abrasion wear.  相似文献   

7.
To improve the wear resistance of copper components, laser surface cladding (LSC) was applied to deposit (Ti,W)C reinforced Ni–30Cu alloy composite coating on copper using a cladding interlayer of Ni–30Cu alloy by Nd:YAG laser. The microstructure and phases of the composite coating were investigated by scanning electron microscopy (SEM), X-ray diffraction (XRD) and X-ray energy dispersive microanalysis (EDX). Microhardness tester and pin-on-disc wear tester were employed to evaluate the hardness and dry-sliding wear resistance. The results show that crack-free composite coating with metallurgical bonding to the copper substrate is obtained. Phases identified in the (Ti,W)C-reinforced Ni–30Cu alloy composite layer are composed of TiWC2 reinforcements and (Ni,Cu) solid solution. TiWC2 reinforcements are distributed uniformly in the (Ni,Cu) solid solution matrix with dendritic morphology in the upper region and with particles in the mid-lower region. The microhardness and wear properties of the composite coating are improved significantly in comparison to the as-received copper substrate due to the addition of 50 wt% (Ti,W)C multicarbides.  相似文献   

8.
A wear resistant (Cr, Fe)7C3/γ-Fe ceramal composite coating was fabricated on substrate of a 0.45%C carbon steel by plasma transferred arc (PTA) cladding process using the Fe-Cr-C elemental powder blends. The microstructure, microhardness and dry-sliding wear resistance of the coating were evaluated. Results shown that the plasma transferred arc clad ceramal composite coating has a rapidly solidified microstructure consisting of blocky primary (Cr, Fe)7C3 and the inter-blocky (Cr, Fe)7C3/γ-Fe eutectics and is metallurgically bonded to the 0.45%C carbon steel substrate. The ceramal composite coating has high hardness and excellent wear resistance under dry sliding wear test condition.  相似文献   

9.
镍基非晶复合涂层激光制备及其纳米压痕测试   总被引:1,自引:0,他引:1       下载免费PDF全文
采用大功率半导体激光熔覆和重熔的工艺在低碳钢表面制备Ni-Fe-B-Si-Nb合金非晶复合涂层,并对所得涂层进行了纳米压痕性能测试。研究结果表明,当激光熔覆时激光功率为0.8kW,熔覆速度为0.36m/min,送粉速度为12g/min,重熔时激光功率为3.5kW,熔覆速度为8m/min,在低碳钢表面成功制备了Ni40.8Fe27.2B18Si10Nb4非晶复合涂层,涂层主要由非晶相和NbC颗粒相组成。纳米压痕测试结果表明经激光重熔后所得非晶复合涂层的显微硬度和弹性模量远远大于未重熔的熔覆层,并且也大于同成分大块非晶。  相似文献   

10.
Laser cladding of the Al + TiC alloy powder on Ti-6Al-4V alloy can form the Ti3Al/TiAl + TiC ceramic layer. In this study, TiC particle-dispersed Ti3Al/TiAl matrix ceramic layer on the Ti-6Al-4V alloy by laser cladding has been researched by means of X-ray diffraction, scanning electron microscope, electron probe micro-analyzer, energy dispersive spectrometer. The main difference from the earlier reports is that Ti3Al/TiAl has been chosen as the matrix of the composite coating. The wear resistance of the Al + 30 wt.% TiC and the Al + 40 wt.% TiC cladding layer was approximately 2 times greater than that of the Ti-6Al-4V substrate due to the reinforcement of the Ti3Al/TiAl + TiC hard phases. However, when the TiC mass percent was above 40 wt.%, the thermal stress value was greater than the materials yield strength limit in the ceramic layer, the microcrack was present and its wear resistance decreased.  相似文献   

11.
Ni-Al2O3 composite coatings were prepared by using sediment co-deposition (SCD) technique and conventional electroplating (CEP) technique from Watt's type electrolyte without any additives. The microstructure, hardness, and wear resistance of resulting composites were investigated. The results show that the incorporation of nano-Al2O3 particles changes the surface morphology of nickel matrix. The preferential orientation is modified from (2 0 0) plane to (1 1 1) plane. The microhardness of Ni-Al2O3 composite coatings in the SCD technique are higher than that of the CEP technique and pure Ni coating and increase with the increasing of the nano-Al2O3 particles concentration in plating solution. The wear rate of the Ni-Al2O3 composite coating fabricated via SCD technique with 10 g/l nano-Al2O3 particles in plating bath is approximately one order of magnitude lower than that of pure Ni coating. Wear resistance for SCD obtained composite coatings is superior to that obtained by the CEP technique. The wear mechanism of pure Ni and nickel nano-Al2O3 composite coatings are adhesive wear and abrasive wear, respectively.  相似文献   

12.
Ni-SiC nanocomposite coatings were produced by electrodeposition from a nickel sulfate bath containing SiC nanoparticles with an average particle size of 30 nm. The characteristics of the coatings were assessed by scanning electron microscopy and microhardness test. The friction and wear performance of Ni-SiC nanocomposite coatings and Ni film were comparatively investigated sliding against Si3N4 ceramic balls under non-lubricated conditions. The results indicated that compared to Ni film, Ni-SiC nanocomposite coating exhibited enhanced microhardness and wear resistance. The effect of SiC nanoparticles on the friction and wear resistance is discussed in detail.  相似文献   

13.
Fe + 50 wt.% WC composite coating was prepared by laser induction hybrid rapid cladding (LIHRC) on steel substrate. The phase and microstructure of the composite coating were investigated by X-ray diffraction (XRD), environmental scanning electron microscope (ESEM) and energy dispersive spectrum (EDS). The results showed that WC particles were dissolved almost completely to precipitate the coarse herringbone M6C eutectic carbides and the fine dendritic M6C carbides, and that the partially dissolved WC particles with an alloyed reaction layer were occasionally observed in the whole coating. The phases of the composite coating were composed of supersaturated solid solution α-Fe, retained austenite, Fe3C, W2C, M6C and M7C3. The microstructure evolution in the composite coating was represented by the transformation of three parts such as Fe-based metallic matrix, dispersed carbides and incompletely dissolved WC particles. The microhardness of Fe-based WC composite coating was three times much higher than that of the substrate, but was relatively lower than that of Ni-based WC composite coating by LIHRC.  相似文献   

14.
In order to improve the tribology and high-temperature oxidation properties of the Ti-48Al-2Cr-2Nb intermetallic alloy simultaneously, mixed NiCr-Cr3C2 precursor powders had been investigated for laser cladding treatment to modify wear and high-temperature oxidation resistance of the material. The alloy samples were pre-placed with NiCr-80, 50 and 20%Cr3C2 (wt.%), respectively, and laser treated at the same parameters, i.e., laser output power 2.8 kW, beam scanning speed 2.0 mm/s, beam dimension 1 mm × 18 mm. The treated samples underwent tests of microhardness, wear and high-temperature oxidation. The results showed that laser cladding with different constitution of mixed precursor NiCr-Cr3C2 powders improved surface hardness in all cases. Laser cladding with NiCr-50%Cr3C2 resulted in the best modification of tribology and high-temperature oxidation behavior. X-ray diffraction (XRD), optical microscope (OM), scanning electron microscopy (SEM) and energy-dispersive spectrometer (EDS) analyses indicated that the formation of reinforced Cr7C3, TiC and both continuous and dense Al2O3, Cr2O3 oxide scales were supposed to be responsible for the modification of the relevant properties. As a result, the present work had laid beneficial surface engineering foundation for TiAl alloy applied as future light weight and high-temperature structural candidate materials.  相似文献   

15.
D. Dong 《Applied Surface Science》2009,255(15):7051-7055
Dispersible SiO2 nanoparticles were co-deposited with electroless Ni-P coating onto AISI-1045 steel substrates in the absence of any surfactants in plating bath. The resulting Ni-P/nano-SiO2 composite coatings were heat-treated for 1 h at 200 °C, 400 °C, and 600 °C, respectively. The hardness and wear resistance of the heat-treated composite coatings were measured. Moreover, the structural changes of the composite coatings before and after heat treatment were investigated by means of X-ray diffraction (XRD), while their elemental composition and morphology were analyzed using an energy dispersive spectrometer (EDS) and a scanning electron microscope (SEM). Results show that co-deposited SiO2 particles contributed to increase the hardness and wear resistance of electroless Ni-P coating, and the composite coating heat-treated at about 400 °C had the maximum hardness and wear resistance.  相似文献   

16.
In order to improve the high-temperature wear resistance of austenitic stainless steel, a wear resistant composite coating reinforced with hard (Cr,Fe)7C3 carbide and toughened by ductile γ-(Ni,Fe)/(Cr,Fe)7C3 eutectic matrix was fabricated by a novel central hollow laser cladding technique. The constituent phases and microstructure as well as high-temperature tribological behaviors of the Ni-based coating were investigated, respectively, and the corresponding wear mechanisms were discussed. It has been found that the composite coating exhibits superior wear resistance than substrate either at ambient or high temperatures. The coating shows better sliding wear resistance at 600 °C than 300 °C owing to high-temperature stability of the reinforced carbide and polishing effect as well as formation of continuous lubricious films, which implied it has large potential industrial applications at relatively higher temperatures.  相似文献   

17.
TiCu2Al ternary intermetallic compound coating has been in situ synthesized successfully on pure Ti substrate by laser cladding. Tribological properties of the prepared TiCu2Al intermetallic compound coating were systematically evaluated. It was found that the friction coefficient and wear rate was closely related to the normal load and sliding speed, i.e., the friction coefficient of the prepared TiCu2Al intermetallic compound coating decreased with increasing normal load and sliding speed. The wear rate of the TiCu2Al intermetallic compound coating decreased rapidly with increasing sliding speed, while the wear rate first increased and then decreased at normal load from 5 to 15 N.  相似文献   

18.
Ni-Fe-B-Si-Nb coatings have been deposited on mild steel substrates using high power laser cladding process followed by laser remelting. The influence of Ni-to-Fe concentration ratio in (Ni100−xFex)62B18Si18Nb2 (x = 55, 50, 45 and 40) powders on the phase composition and microstructure is analyzed by X-ray diffraction, scanning- and transmission-electron microscopies. The microhardness and corrosion resistance properties of the coatings are also measured. The results reveal that amorphous matrix layers are obtained for all coatings. The increase of the Ni-to-Fe ratio can promote the formation of γ(Fe-Ni) phase and decrease the formation of Fe2B phase and α-Fe phase. The coating with 1:1 ratio of Ni-to-Fe exhibits the highest microhardness of 1200 HV0.5 and superior corrosion resistance property due to its largest volume fraction of amorphous phase in the coating. Higher or lower than 1:1 ratio of Ni-to-Fe may result in lower amorphous forming ability. However, even that the coating with ratio of 3:2, shows a minimum of microhardness, it shows a better corrosion resistance than other two coatings.  相似文献   

19.
A high wear-resistant gradient coating made of Ni/Co-based alloys on the surface of a Cu alloy substrate was synthesized using a YAG laser induced in situ reaction method. The coating consists of three layers: the first is a Ni-based alloy layer, the second and third are Co-based alloy layers. The microhardness increases gradually from 98 HV in the Cu alloy substrate to the highest level of 876 HV in the third layer. The main phase of the Co-based alloy layer is CoCr2(Ni,O)4, coexisting with the Fe13Mo2B5, Cr(Co(Mo, and FeCr0.29Ni0.16C0.06 phases. Wear tests indicate that the gradient coating has good bond strength and wear properties with a wear coefficient of 0.31 (0.50 for the Cu alloy substrate). Also, the wear loss of the coating is only 0.01 g after it has been abraded for 60 min, which is only one fifth of that of the Cu alloy of the crystallizer. Wear tests of the gradient coating reveal good adhesive friction and wear properties when sliding against steel under dry conditions. This novel technique may have good application to make an advanced coating on the surface of the Cu alloy crystallizer in a continuous casting process.  相似文献   

20.
A new process of preparing Ti-Fe-C composites powder for reactive plasma cladding, precursor carbonization-composition process, was developed. TiC/Fe cermet coatings were synthesized by reactive plasma cladding of the composite powder. XRD and SEM were employed to analyze the phase composition and microstructure of the composite powder and coating. The hardness and wear resistance of the coating was tested. Results show that: The compound powder prepared by precursor carbonization-composition process has very tight structure, which can avert the question of raw powder breaking-up in cladding process. The TiC/Fe cermet coating by reactive plasma cladding consists of alternate, laminated layers as following: the layers in which the round nanoscale TiC particles are dispersed within the α-Fe matrix and the layers of TiC accumulation. The TiC/Fe cermet coating by reactive plasma cladding shows superior hardness and wear resistance: The surface hardness of the TiC/Fe cermet coating is 68 ± 6 (HR30 N). In the same fretting conditions, the wear resistance of Ni60 coating is twelve times than that of the TiC/Fe cermet coating.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号