首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
A new method for shape optimization with relatively large number of design variables is proposed. It is well known that gradient‐based methods converge to a local optimum. As a result, utilization of a richer design space does not necessarily lead to a better design. This is demonstrated via the design of an airfoil for maximum lift for Re = 1000 and α = 4° flow. The airfoil is represented by fourth‐order non‐uniform rational B‐splines, and the control points are used as design variables. Starting with a NACA0012 airfoil, it is found that the optimal airfoil obtained with 13 control points has far superior aerodynamic performance than the ones obtained with 39 and 61 control points. For effective utilization of a richer design space, it is proposed that the number of design variables be increased gradually. The method is demonstrated by designing high lift airfoils for Re = 1000 and 1 × 104. The objective function is the maximization of the time‐averaged lift coefficient for α = 4°. The optimization cycle with 27 control points is initiated with the optimal airfoil obtained with 13 control points. The process is continued with gradual increase in the number of design variables. Beyond a certain number of control points, the optimization leads to a spontaneous appearance of corrugations on the upper surface of the airfoil. The corrugations are responsible for the generation of small vortices that add to the suction on the upper surface of the airfoil and lead to enhanced lift. A stabilized finite element method is used to solve the unsteady flow and adjoint equations. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   

2.
Results are presented for the flow past a stationary square cylinder at zero incidence for Reynolds number, Re ? 150. A stabilized finite‐element formulation is employed to discretize the equations of incompressible fluid flow in two‐dimensions. For the first time, values of the laminar separation Reynolds number, Res, and separation angle, θs, at Res are predicted. Also, the variation of θs with Re is presented. It is found that the steady separation initiates at Re = 1.15. Contrary to the popular belief that separation originates at the rear sharp corners, it is found to originate from the base point, i.e. θs=180° at Re = Res. For Re > 5, θs approaches the limit of 135 °. The length of the separation bubble increases approximately linearly with increasing Re. The drag coefficient varies as Re?0.66. Flow characteristics at Re ? 40 are also presented for elliptical cylinders of aspect ratios 0.2, 0.5, 0.8 and 1 (circle) having the same characteristic dimension as the square and major axis oriented normal to the free‐stream. Compared with a circular cylinder, the flow separates at a much lower Re from a square cylinder leading to the formation of a bigger wake (larger bubble length and width). Consequently, at a given Re, the drag on a square cylinder is more than the drag of a circular cylinder. This suggests that a cylinder with square section is more bluff than the one with circular section. Among all the cylinder shapes studied, the square cylinder with sharp corners generates the largest amount of drag. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   

3.
In this article, we develop a new airfoil shape optimization algorithm based on higher‐order adaptive DG methods with control of the discretization error. Each flow solution in the optimization loop is computed on a sequence of goal‐oriented h‐refined or hp‐refined meshes until the error estimation of the discretization error in a flow‐related target quantity (including the drag and lift coefficients) is below a prescribed tolerance. Discrete adjoint solutions are computed and employed for the multi‐target error estimation and adaptive mesh refinement. Furthermore, discrete adjoint solutions are employed for evaluating the gradients of the objective function used in the CGs optimization algorithm. Furthermore, an extension of the adjoint‐based gradient evaluation to the case of target lift flow computations is employed. The proposed algorithm is demonstrated on an inviscid transonic flow around the RAE2822, where the shape is optimized to minimize the drag at a given constant lift and airfoil thickness. The effect of the accuracy of the underlying flow solutions on the quality of the optimized airfoil shapes is investigated. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   

4.
An experimental study was conducted to investigate the aerodynamic characteristics of a bio-inspired corrugated airfoil compared with a smooth-surfaced airfoil and a flat plate at the chord Reynolds number of Re C  = 58,000–125,000 to explore the potential applications of such bio-inspired corrugated airfoils for micro air vehicle designs. In addition to measuring the aerodynamic lift and drag forces acting on the tested airfoils, a digital particle image velocimetry system was used to conduct detailed flowfield measurements to quantify the transient behavior of vortex and turbulent flow structures around the airfoils. The measurement result revealed clearly that the corrugated airfoil has better performance over the smooth-surfaced airfoil and the flat plate in providing higher lift and preventing large-scale flow separation and airfoil stall at low Reynolds numbers (Re C  < 100,000). While aerodynamic performance of the smooth-surfaced airfoil and the flat plate would vary considerably with the changing of the chord Reynolds numbers, the aerodynamic performance of the corrugated airfoil was found to be almost insensitive to the Reynolds numbers. The detailed flow field measurements were correlated with the aerodynamic force measurement data to elucidate underlying physics to improve our understanding about how and why the corrugation feature found in dragonfly wings holds aerodynamic advantages for low Reynolds number flight applications.  相似文献   

5.
The effects of a trapped vortex cell (TVC) on the aerodynamic performance of a NACA0024 wing model were investigated experimentally at Re = 106 and 6.67×1056.67\times 10^{5}. The static pressure distributions around the model and the wake velocity profiles were measured to obtain lift and drag coefficients, for both the clean airfoil and the controlled configurations. Suction was applied in the cavity region to stabilize the trapped vortex. For comparison, a classical boundary layer suction configuration was also tested. The drag coefficient curve of the TVC-controlled airfoil showed sharp discontinuities and bifurcative behavior, generating two drag modes. A strong influence of the angle of attack, the suction rate and the Reynolds number on the drag coefficient was observed. With respect to the clean airfoil, the control led to a drag reduction only if the suction was high enough. Compared to the classical boundary layer suction configuration, the drag reduction was higher for the same amount of suction only in a specific range of incidence, i.e., α = −2° to α = 6° and only for the higher Reynolds number. For all the other conditions, the classical boundary layer suction configuration gave better drag performances. Moderate increments of lift were observed for the TVC-controlled airfoil at low incidence, while a 20% lift enhancement was observed in the stall region with respect to the baseline. However, the same lift increments were also observed for the classical boundary layer suction configuration. Pressure fluctuation measurements in the cavity region suggested a very complex interaction of several flow features. The two drag modes were characterized by typical unsteady phenomena observed in rectangular cavity flows, namely the shear layer mode and the wake mode.  相似文献   

6.
The present paper highlights results derived from the application of a high-fidelity simulation technique to the analysis of low-Reynolds-number transitional flows over moving and flexible canonical configurations motivated by small natural and man-made flyers. This effort addresses three separate fluid dynamic phenomena relevant to small fliers, including: laminar separation and transition over a stationary airfoil, transition effects on the dynamic stall vortex generated by a plunging airfoil, and the effect of flexibility on the flow structure above a membrane airfoil. The specific cases were also selected to permit comparison with available experimental measurements. First, the process of transition on a stationary SD7003 airfoil section over a range of Reynolds numbers and angles of attack is considered. Prior to stall, the flow exhibits a separated shear layer which rolls up into spanwise vortices. These vortices subsequently undergo spanwise instabilities, and ultimately breakdown into fine-scale turbulent structures as the boundary layer reattaches to the airfoil surface. In a time-averaged sense, the flow displays a closed laminar separation bubble which moves upstream and contracts in size with increasing angle of attack for a fixed Reynolds number. For a fixed angle of attack, as the Reynolds number decreases, the laminar separation bubble grows in vertical extent producing a significant increase in drag. For the lowest Reynolds number considered (Re c  = 104), transition does not occur over the airfoil at moderate angles of attack prior to stall. Next, the impact of a prescribed high-frequency small-amplitude plunging motion on the transitional flow over the SD7003 airfoil is investigated. The motion-induced high angle of attack results in unsteady separation in the leading edge and in the formation of dynamic-stall-like vortices which convect downstream close to the airfoil. At the lowest value of Reynolds number (Re c  = 104), transition effects are observed to be minor and the dynamic stall vortex system remains fairly coherent. For Re c  = 4 × 104, the dynamic-stall vortex system is laminar at is inception, however shortly afterwards, it experiences an abrupt breakdown associated with the onset of spanwise instability effects. The computed phased-averaged structures for both values of Reynolds number are found to be in good agreement with the experimental data. Finally, the effect of structural compliance on the unsteady flow past a membrane airfoil is investigated. The membrane deformation results in mean camber and large fluctuations which improve aerodynamic performance. Larger values of lift and a delay in stall are achieved relative to a rigid airfoil configuration. For Re c = 4.85 × 104, it is shown that correct prediction of the transitional process is critical to capturing the proper membrane structural response.  相似文献   

7.
Fluid forces on a very low Reynolds number airfoil and their prediction   总被引:1,自引:0,他引:1  
This paper presents the measurements of mean and fluctuating forces on an NACA0012 airfoil over a large range of angle (α) of attack (0-90°) and low to small chord Reynolds numbers (Rec), 5.3 × 103-5.1 × 104, which is of both fundamental and practical importance. The forces, measured using a load cell, display good agreement with the estimate from the LDA-measured cross-flow distributions of velocities in the wake based on the momentum conservation. The dependence of the forces on both α and Rec is determined and discussed in detail. It has been found that the stall of an airfoil, characterized by a drop in the lift force and a jump in the drag force, occurs at Rec ? 1.05 × 104 but is absent at Rec = 5.3 × 103. A theoretical analysis is developed to predict and explain the observed dependence of the mean lift and drag on α.  相似文献   

8.
Computational results for flow past a two‐dimensional model of a ram‐air parachute with leading edge cut are presented. Both laminar (Re=104) and turbulent (Re=106) flows are computed. A well‐proven stabilized finite element method (FEM), which has been applied to various flow problems earlier, is utilized to solve the incompressible Navier–Stokes equations in the primitive variables formulation. The Baldwin–Lomax model is employed for turbulence closure. Turbulent flow computations past a Clarck‐Y airfoil without a leading edge cut, for α=7.5°, result in an attached flow. The leading edge cut causes the flow to become unsteady and leads to a significant loss in lift and an increase in drag. The flow inside the parafoil cell remains almost stagnant, resulting in a high value of pressure, which is responsible for giving the parafoil its shape. The value of the lift‐to‐drag ratio obtained with the present computations is in good agreement with those reported in the literature. The effect of the size and location of the leading edge cut is studied. It is found that the flow on the upper surface of the parafoil is fairly insensitive to the configuration of the cut. However, the flow quality on the lower surface improves as the leading edge cut becomes smaller. The lift‐to‐drag ratio for various configurations of the leading edge cut varies between 3.4 and 5.8. It is observed that even though the time histories of the aerodynamic coefficients from the laminar and turbulent flow computations are quite different, their time‐averaged values are quite similar. Copyright © 2001 John Wiley & Sons, Ltd.  相似文献   

9.
Turbulent cavitating flow computations need to address both cavitation and turbulence modelling issues. A recently developed interfacial dynamics‐based cavitation model (IDCM) incorporates the interfacial transport into the computational modelling of cavitation dynamics. For time‐dependent flows, it is known that the engineering turbulence closure such as the original kε model often over‐predicts the eddy viscosity values reducing the unsteadiness. A recently proposed filter‐based modification has shown that it can effectively modulate the eddy viscosity, rendering better simulation capabilities for time‐dependent flow computations in term of the unsteady characteristics. In the present study, the IDCM along with the filter‐based kε turbulence model is adopted to simulate 2‐D cavitating flows over the Clark‐Y airfoil. The chord Reynolds number is Re=7.0 × 105. Two angles‐of‐attack of 5 and 8° associated with several cavitation numbers covering different flow regimes are conducted. The simulation results are assessed with the experimental data including lift, drag and velocity profiles. The interplay between cavitation and turbulence models reveals substantial differences in time‐dependent flow results even though the time‐averaged characteristics are similar. Copyright © 2005 John Wiley & Sons, Ltd.  相似文献   

10.
Adjoint formulation is employed for the optimal control of flow around a rotating cylinder, governed by the unsteady Navier–Stokes equations. The main objective consists of suppressing Karman vortex shedding in the wake of the cylinder by controlling the angular velocity of the rotating body, which can be constant in time or time‐dependent. Since the numerical control problem is ill‐posed, regularization is employed. An empirical logarithmic law relating the regularization coefficient to the Reynolds number was derived for 60?Re?140. Optimal values of the angular velocity of the cylinder are obtained for Reynolds numbers ranging from Re=60 to Re=1000. The results obtained by the computational optimal control method agree with previously obtained experimental and numerical observations. A significant reduction of the amplitude of the variation of the drag coefficient is obtained for the optimized values of the rotation rate. Copyright © 2002 John Wiley & Sons, Ltd.  相似文献   

11.
The interaction between the wake of a rotor blade and a downstream cylinder holds the key to the understanding and control of electronic cooling fan noise. In this paper, the aerodynamic characteristics of a circular cylinder are experimentally studied in the presence of an upstream NACA 4412 airfoil for the cylinder-diameter-based Reynolds numbers of Red=2,100–20,000, and the airfoil chord-length-based Reynolds numbers of Rec=14,700–140,000. Lift and drag fluctuations on the cylinder, and the longitudinal velocity fluctuations of the flow behind the cylinder were measured simultaneously using a load cell and two hot wires, respectively. Data analysis shows that unsteady forces on the cylinder increase significantly in the presence of the airfoil wake. The dependence of the forces on two parameters is investigated, that is, the lateral distance (T) between the airfoil and the cylinder, and the Reynolds number. The forces decline quickly as T increases. For Rec<60,000, the vortices shed from the upstream airfoil make a major contribution to the unsteady forces on the cylinder compared to the vortex shedding from the cylinder itself. For Rec>60,000, no vortices are generated from the airfoil, and the fluctuating forces on the cylinder are caused by its own vortex shedding.  相似文献   

12.
Flow past a circular cylinder for Re=100 to 107 is studied numerically by solving the unsteady incompressible two‐dimensional Navier–Stokes equations via a stabilized finite element formulation. It is well known that beyond Re ~ 200 the flow develops significant three‐dimensional features. Therefore, two‐dimensional computations are expected to fall well short of predicting the flow accurately at high Re. It is fairly well accepted that the shear layer instability is primarily a two‐dimensional phenomenon. The frequency of the shear layer vortices, from the present computations, agree quite well with the Re0.67 variation observed by other researchers from experimental measurements. The main objective of this paper is to investigate a possible relationship between the drag crisis (sudden loss of drag at Re ~ 2 × 105) and the instability of the separated shear layer. As Re is increased the transition point of shear layer, beyond which it is unstable, moves upstream. At the critical Reynolds number the transition point is located very close to the point of flow separation. As a result, the shear layer eddies cause mixing of the flow in the boundary layer. This energizes the boundary layer and leads to its reattachment. The delay in flow separation is associated with narrowing of wake, increase in Reynolds shear stress near the shoulder of the cylinder and a significant reduction in the drag and base suction coefficients. The spatial and temporal power spectra for the kinetic energy of the Re=106 flow are computed. As in two‐dimensional isotropic turbulence, E(k) varies as k?5/3 for wavenumbers higher than energy injection scale and as k?3 for lower wavenumbers. The present computations suggest that the shear layer vortices play a major role in the transition of boundary layer from laminar to turbulent state. Copyright © 2004 John Wiley & Sons, Ltd.  相似文献   

13.
A direct force measurement technique employing piezoelectric load cells is used to experimentally investigate a two-dimensional airfoil (NACA 0012) undergoing dynamic stall. The load cells are installed at each end of the airfoil and give the force response in two directions in the plane normal to the airfoil axis during oscillations. Experiments are carried out at a Reynolds number based on the airfoil chord equal to 7.7×104, and at four reduced frequencies, k=0.005, 0.01, 0.02, and 0.04. Phase-averaged lift of the airfoil undergoing dynamic stall is presented. It is observed that hysteresis loops of the lift occur both when the airfoil is pitched to exceed its static stall limit and when it is still within its static stall limit, and they grow in size with increasing k at the same pitching mean angle of attack and pitching amplitude. Both the lift and the drag induced by the pitching motion are further analyzed using the methods of higher order correlation analysis and continuous wavelet transforms to undercover their nonlinear and nonstationary features, in addition to classical FFT-based spectral analysis. The results are quantitatively illustrated by an energy partition analysis. It is found that the unsteady lift and drag show opposite trends when the airfoil undergoes transition from the pre-stall regime to the full-stall regime. The degree of nonlinearity of the lift increases, and the lift show a nonstationary feature in the light-stall regime, while the nonlinearity of the drag decreases, and the drag shows nonstationary feature in both the light-stall and the full-stall regimes. Furthermore, the lift and the drag have significant nonlinear interactions as shown by the correlation analysis in the light-stall regime.  相似文献   

14.
The ultra-low Reynolds number airfoil wake   总被引:1,自引:0,他引:1  
Lift force and the near wake of an NACA 0012 airfoil were measured over the angle (α) of attack of 0°–90° and the chord Reynolds number (Re c ), 5.3 × 103–5.1 × 104, with a view to understand thoroughly the near wake of the airfoil at low- to ultra-low Re c . While the lift force is measured using a load cell, the detailed flow structure is captured using laser-Doppler anemometry, particle image velocimetry, and laser-induced fluorescence flow visualization. It has been found that the stall of an airfoil, characterized by a drop in the lift force, occurs at Re c  ≥ 1.05 × 104 but is absent at Re c  = 5.3 × 103. The observation is connected to the presence of the separation bubble at high Re c but absence of the bubble at ultra-low Re c , as evidenced in our wake measurements. The near-wake characteristics are examined and discussed in detail, including the vortex formation length, wake width, spanwise vorticity, wake bubble size, wavelength of K–H vortices, Strouhal numbers, and their dependence on α and Re c .  相似文献   

15.
A numerical study of history forces acting on a spherical particle in a linear shear flow, over a range of finite Re, is presented. In each of the cases considered, the particle undergoes rapid acceleration from Re1 to Re2 over a short-time period. After acceleration, the particle is maintained at Re2 in order to allow for clean extraction of drag and lift kernels. Good agreement is observed between current drag kernel results and previous investigations. Furthermore, ambient shear is found to have little influence on the drag kernel. The lift kernel is observed to be oscillatory, which translates to a non-monotonic change in lift force to the final steady state. In addition, strong dependence on the start and end conditions of acceleration is observed. Unlike drag, the lift history kernel scales linearly with Reynolds number and shear rate. This behavior is consistent with a short-time inviscid evolution. A simple expression for the lift history kernel is presented.  相似文献   

16.
The unsteady forces on a square cylinder in sinusoidally oscillating flows with non‐zero‐mean velocities are investigated numerically by using a weakly compressible‐flow method with three‐dimensional large eddy simulations. The major parameters in the analysis are Keulegan–Carpenter number (KC) and the ratio between the amplitude and the mean velocities of the approaching flow (AR). By varying the values of KC and AR the resulting drag and lift of the cylinders are analyzed systematically at two selected approaching‐flow attack angles (0 and 22.5°). In the case of the non‐zero attack angle, results show that both the drag and lift histories can be adequately described by Morison equations. However, Morison equations fail to correctly describing the lift history as the attack angle is zero. In addition, when the ratio of AR/KC is near the Strouhal number of the bluff‐body flow, the resulting drag is promoted due to the occurrence of resonance. Based on the results of systematic analyses, finally, the mean and inertia force coefficients at the two selected attack angles are presented as functions of KC and AR based on the Morison relationships. Copyright © 2008 John Wiley & Sons, Ltd.  相似文献   

17.
The lift force on an isolated rotating sphere in a uniform flow was investigated by means of a three-dimensional numerical simulation for low Reynolds numbers (based on the sphere diameter) (Re&lt;68.4) and high dimensionless rotational speeds (Г5). The Navier-Stokes equations in Cartesian coordinate system were solved using a finite volume formulation based on SIMPLE procedure. The accuracy of the numerical simulation was tested through a comparison with available theoretical, numerical and experimental results at low Reynolds numbers, and it was found that they were in close agreement under the above mentioned ranges of the Reynolds number and rotational speed. From a detailed computation of the flow field around a rotational sphere in extended ranges of the Reynolds number and rotational speed, the results show that, with increasing the rotational speed or decreasing the Reynolds number, the lift coefficient increases. An empirical equation more accurate than those obtained by previous studies was obtained to describe both effects of the rotational speed and Reynolds number on the lift force on a sphere. It was found in calcttlations that the drag coefficient is not significantly affected by the rotation of the sphere. The ratio of the lift force to the drag force, both of which act on a sphere in a uniform flow at the same time, was investigated. For a small spherical particle such as one of about 100μm in diameter, even if the rotational speed reaches about 10^6 revolutions per minute, the lift force can be neglected as compared with the drag force.  相似文献   

18.
We analyzed the modifications of the airflow around an NACA 0015 airfoil when the flow was perturbed with electrohydrodynamic forces. The actuation was produced with a plasma sheet device (PSD) consisting in two bare electrodes flush mounted on the surface of the wing profile operated to obtain a discharge contouring the body in the inter-electrode space. We analyze the influence of different parameters of the actuation (frequency, input power, electrodes position) on the aerodynamic performance of the airfoil, basing our study on measurements of the surface pressure distribution and of the flow fields with particle image velocimetry technique. The experiments indicated that at moderate Reynolds numbers (150,000 < Re < 333,000) and at high angles of attack, steady or periodic actuations enabled large improvement of the lift and drag/lift aerodynamic coefficients by reattaching the flow along the extrados. However, to attain the same results steady actuations required larger power consumption. When exciting the flow with a moderate value of non-dimensional power coefficient (ratio of electric power flow with the kinetic power flow), a frequency of excitation produced a peak on the coefficients that evaluate the airfoil performance. This peak in terms of a non-dimensional frequency was close to 0.4 and can be associated to an optimal frequency of excitation. However, our work indicates that this peak is not constant for all stalled flow conditions and should be analyzed considering scale factors that take into account the ratio of the length where the forcing acts and the cord length.  相似文献   

19.
Hybrid unsteady-flow simulation combining particle tracking velocimetry (PTV) and direct numerical simulation (DNS) is introduced in the series of two papers. Particle velocities on a laser-light sheet acquired with time-resolved PTV in a water tunnel are supplied to two-dimensional DNS with time intervals corresponding to the frame rate of the PTV. Hybrid velocity fields then approach those representing the PTV data in the course of time, and the reconstructed velocity fields satisfy the governing equations with the resolution comparable to numerical simulation. In part 2, by extending the capabilities of the hybrid simulation to higher Reynolds numbers, we simulate flows past the NACA0012 airfoil over ranges of Reynolds numbers (Re ≤ 104) and angles of attack (−5° ≤ α ≤ 20°) and validate the proposed technique by comparing with experimental results in terms of the lift and drag coefficients. We also compare the results with unsteady Reynolds-averaged Navier–Stokes (URANS) simulation in two-dimensions and show the advantages of the hybrid simulation against two-dimensional URANS.  相似文献   

20.
LES and RANS for Turbulent Flow over Arrays of Wall-Mounted Obstacles   总被引:2,自引:0,他引:2  
Large-eddy simulation (LES) has been applied to calculate the turbulent flow over staggered wall-mounted cubes and staggered random arrays of obstacles with area density 25%, at Reynolds numbers between 5 × 103 and 5 106, based on the free stream velocity and the obstacle height. Re = 5 × 103 data were intensively validated against direct numerical simulation (DNS) results at the same Re and experimental data obtained in a boundary layer developing over an identical roughness and at a rather higher Re. The results collectively confirm that Reynolds number dependency is very weak, principally because the surface drag is predominantly form drag and the turbulence production process is at scales comparable to the roughness element sizes. LES is thus able to simulate turbulent flow over the urban-like obstacles at high Re with grids that would be far too coarse for adequate computation of corresponding smooth-wall flows. Comparison between LES and steady Reynolds-averaged Navier-Stokes (RANS) results are included, emphasising that the latter are inadequate, especially within the canopy region.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号