首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The 13C spin–lattice relaxation times of tropine and pseudotropine have been measured in CDCl3 as a function of concentration. The same relative increase in concentration serves to increase the relaxation rates much less in the region 0.9–5.0 wt.% than in the region 5.0–14.3 wt.%. The rotational diffusion coefficients have been calculated from the relaxation data using Woessner's anisotropic rotational diffusion model. Reorientation of both molecules is shown to be moderately anisotropic. The principal axes of the rotational diffusion tensor in the symmetry plane of both molecules are rotationally shifted from the principal axes of the moment of inertia tensor of the free molecules, and the main rotational axis is parallel with a line passing through the centre of mass of the molecule and the nitrogen atom.  相似文献   

2.
Electron spin resonance (ESR) measurements were carried out to study the rotation of methyl radicals (CH3) in a solid argon matrix at 14-35 K temperatures. The radicals were produced by dissociating methane by plasma bursts generated either by a focused 193 nm laser radiation or a radio frequency discharge device during the gas condensation on the substrate. The ESR spectrum exhibits axial symmetry at the lowest temperature and is ascribed to ground state molecules with symmetric total nuclear spin function I=3/2. The hyperfine anisotropy (Aparallel)-Aperpendicular) was found to be -0.01 mT, whereas that of the g value was 2.5x10(-5). The anisotropy is observed for the first time in Ar and is manifested by the splitting of the low-field transition. Elevation of temperature leads reversibly to the appearance of excited state contribution having antisymmetric I=1/2. As a function of the sample temperature, the relative intensities of symmetric and antisymmetric spin states corresponding to ground and excited rotor states, respectively, proton hyperfine and electron g-tensor components, and spin-lattice relaxation rates were determined by a numerical fitting procedure. The experimental observations were interpreted in terms of a free rotation about the C3 axis and a thermal activation of the C2-type rotations above 15 K. The ground and excited rotational state energy levels were found to be separated by 11.2 cm-1 and to exhibit significantly different spin-lattice coupling. A crystal field model has been applied to evaluate the energy levels of the hindered rotor in the matrix, and crystal field parameter varepsilon4=-200 cm-1, corresponding to a 60 cm-1 effective potential barrier for rotation of the C3 axis, was obtained.  相似文献   

3.
In isotactic poly(methyl methacrylate) (PMMA), we investigate the dynamics of the ester methyl groups by means of deuteron magnetic resonance (DMR) in a deuterated sample. We find that the motion of the CD(3)-group affects the deuteron spin-lattice relaxation as well as the DMR line shape in a characteristic way. Quadrupolar order spin lattice relaxation measurements between T=291 K and T=70 K reveal a broad temperature dependent probability distribution of autocorrelation times tau(c) for the 2pi/3 reorientation. This broad distribution corresponds to a temperature independent Gaussian distribution of activation energies rho(E(a)) with variance sigma(E(a) )=13.8+/-0.5 meV (1.33 kJ/mol). The line shape transition between T=70 K and T=23 K is explained with the freezing in of the methyl group reorientation. By comparing our results in an 88% isotactic sample with results obtained from a 50% syndiotactic, 30% atactic, and 20% isotactic sample of a previous investigation, we demonstrate the higher local order of the 88% isotactic sample, which corresponds to a ratio of 1.6 in the relative width sigma(E(a) )/E(a) of the E(a) distribution. We show that different stereospecific forms of PMMA can be easily distinguished by the characteristics of their line shape transition between T=70 K and T=23 K.  相似文献   

4.
(CH3)4NGeCl3 is prepared, characterized and studied using 1H NMR spin lattice relaxation time and second moment to understand the internal motions and quantum rotational tunneling. Proton second moment is measured at 7 MHz as function of temperature in the range 300-77 K and spin lattice relaxation time (T1) is measured at two Larmor frequencies, as a function of temperature in the range 270-17 K employing a homemade wide-line/pulsed NMR spectrometers. T1 data are analyzed in two temperature regions using relevant theoretical models. The relaxation in the higher temperatures (270-115 K) is attributed to the hindered reorientations of symmetric groups (CH3 and (CH3)4N). Broad asymmetric T1 minima observed below 115 K down to 17 K are attributed to quantum rotational tunneling of the inequivalent methyl groups.  相似文献   

5.
Wang XY  Wang ZM  Gao S 《Inorganic chemistry》2008,47(13):5720-5726
The magnetic properties of Co(N 3) 2(4acpy) 2 have been thoroughly reexamined on both powder and well-oriented single crystal samples. This azido-bridged cobalt compound of (4, 4) layer shows a weak-ferromagnetic state below T C = 11.2 K. The magnetic axes were determined to be along the crystallographic a*, b, and c axes for the monoclinic space group P2 1/c. The easy axis lies along the b-axis, the canting is along the a*-axis, and the hard axis is along the c-axis. Strong anisotropy due to the oriented moments in the ordered state and/or the single-ion anisotropy of Co (2+) exists in the whole temperature range from 2 to 300 K. Below T C, very big spontaneous magnetization was observed and was attributed to the very big canting angle (15 degrees at 2 K). A possible spin configuration was then proposed to explain the experimental results. The origin of the big spin canting was discussed, and a weak-ferromagnetic approach toward molecular magnets with big spontaneous magnetization was proposed accordingly.  相似文献   

6.
This paper reports the temperature dependence of the relaxation time T1 (55.2 and 90 MHz) and the second moment of the NMR line for protons in a polycrystalline sample of [NH2(CH3)2]3Sb2Cl9 (DMACA). The fundamental aspects of molecular dynamics from quantum tunneling at low temperatures to thermally activated reorientation at elevated temperatures have been studied. The experimentally observed spin-lattice relaxation rate is a consequence of dipolar interactions between the spin pairs inside the methyl group (1/T(1AE) contribution) as well as the spins belonging to neighboring methyl groups and pairs, methyl spin-outer methyl spin (1/T(1EE) contribution). These contributions are considered separately. Two methyl groups in the dimethylammonium (DMA) cations are dynamically inequivalent. The values of the tunnel splitting of separate methyl groups are obtained from the T1 (55.2 MHz) experiment. The tunneling dynamics taking place below the characteristic temperatures 74 and 42 K for separate methyl groups are discussed in terms of the Schr?dinger equation. These temperatures point to the one at which thermal energy C(p)T and potential barrier take the same value. It is established that the second moment of the proton NMR line below 74 K up to liquid helium temperature is much lower than the rigid lattice value, which is due to a tunneling stochastic process of the methyl groups.  相似文献   

7.
The pulse sequence for generating coherence transfer (or polarization transfer) is invoked to enhance the signal of heteronuclear two spin order (e.g. 2IZSZ) in a spin system with CH moiety. This allows the observation of selective conversion of Zeeman order, in a sample with natural abundant 13C nuclei, into two spin order for measuring cross-correlation of chemical shift anisotropy and dipole-dipole interactions. The molecular reorientational correlation time and the orientation of the C–H axis with respect to the principal axes of carboxyl CSA tensor may be determined simultaneously in the relaxation profile of two spin order.  相似文献   

8.
Molecular reorientation in the presence of internal rotation is investigated and an analytical expression for the spin—rotational rate of a nucleus attached to the internal rotor is obtained in terms of the internal angular-momentum correlation time. A model of a symmetric-top molecule undergoing anisotropic rotational diffusion is extended to include a modified extended diffusion of internal rotation. The result is applied to liquid toluene and the internal angular-momentum correlation time is evaluated from the 13C nuclear spin—rotational relaxation rate of the methyl carbon. A comparison with the previous result on the dipole—dipole relaxation data is made and the consistency of the present theory is discussed.  相似文献   

9.
(Nd1-xYx)3Fe27.31Ti1.69化合物的结构与磁性研究   总被引:2,自引:0,他引:2  
制备了(Nd1-xYx)3Fe27.31Ti1.69(0≤x≤0.6)系列化合物,通过X射线衍射和磁性测量等手段研究了它们的结构和磁性.这些化合物均为Nd3(Fe,Ti)29型结构,A2/m空间群.化合物晶胞体积随Y含量增加而单调减少,居里温度Tc随Y含量增加略有降低,说明化合物的居里温度主要由Fe-Fe之间的交换相互作用所决定.温度为5K时,饱和磁化强度Ms随Y含量的增加而单调降低,与一个简单的稀释模型预期结果一致.所得化合物在低温下均发生自旋重取向,自旋重取向温度Tsr随Y含量增加而单调降低,从x=0时的232K减小到x=0.6时的121K.基于磁晶各向异性的研究结果确定了所得化合物的自旋相图.  相似文献   

10.
Deuteron spin–lattice relaxation is studied in 5% and 100% deuterated ammonium hexachlorostannate and perchlorate. The relaxation rate is observed to be independent of deuteration down to temperatures slightly lower than that of the maximum. At lower temperatures the rate of the 5% deuterated sample exceeds that of the 100% deuterated sample by four and two orders of magnitude in ammonium hexachlorostannate and perchlorate, respectively. The angular dependence of the deuteron relaxation rate in 5% deuterated ammonium hexachlorostannate at 6 K is explained in terms of existing models on quadrupolar relaxation. In 5% ammonium perchlorate one hydrogen equilibrium position, which lies on the preferred axis for 120° rotations, has a larger probability to be occupied by the deuteron of NH3D+ ions. The deuterons at the other positions are still performing rotational jumps about the preferred C3 axis and also about the other threefold axes, although at a slower rate. Such observations require a reconsideration of the relaxation process. A somewhat more general expression is derived for the relaxation rate, which agrees with the experimentally observed angular dependence for 5% deuterated ammonium perchlorate at 60 K. At lower temperatures the quadrupole coupling of the deuterons at the preferred axis may become practically time-independent. Then a significant contribution to the relaxation rate can be provided by the deuteron–proton magnetic dipolar interaction, which is still fluctuating fast via the rotation of the three protons about the axis through the stationary deuteron.  相似文献   

11.
王玮  李来明 《分析化学》1992,20(7):769-773
在280~320K的温度范围内考察了30%十六烷基三甲基溴化铵水溶液的红外光谱随温度的变化。结果表明该体系的凝聚胶-液晶相转变温度为300K。在300K以下的凝聚胶相,分子的极性头部基团处于高度“固定”的状态,分子的碳氢链以有序的相互平行方式排列,极性头与碳氢链之间有一定的倾斜角。在300K以上的液晶相,极性头内部CH_3-(N~+)基团以及整个极性头与碳氢链之间发生了旋转,碳氢链变为以六方亚晶胞填充形式存在,旦扭曲式构象异构体数量显著增多,极性头与碳氢链之间已不存在倾斜角,分子的亲水极性头和疏水碳氢链部分都处于“融化”状态。  相似文献   

12.
We present a study of crystalline CCl(4) spanning up to 10 orders of magnitude in time at temperatures ranging from 160 K to 190 K using molecular dynamics simulations. The relaxation process is studied using angular self correlation functions. The results show that each of the four nonequivalent molecules of the monoclinic phase have a particular relaxation time. Two of the molecules relax in an exponential way and the two other molecules have a more complex behavior, especially at the lower temperatures. In all cases, the molecular rotations correspond to quick jumps between equivalent tetrahedral equilibrium positions. Most of these rotations are about the C(3) symmetry axes, however at high temperatures, rotations about the C(2) symmetry axes are observed as well. The waiting time between rotations follows a Poisson distribution. The calculated relaxation times show an Arrhenius behavior with different activation energy for different nonequivalent molecules, in line with recently published findings of nuclear quadrupole resonance experiments.  相似文献   

13.
The Woessner approach is applied to the 13C relaxation data for tetraphenyltin (1) and tetra(p-tolyl)tin (2) in CDCl3 solution over the temperature range 5-42 degrees C to obtain correlation times for rotational motions and hence the activation barriers. Quantum mechanical computations were carried out to obtain the rotational energy barriers for comparison. For 2 the relaxation data indicate (1) slower ring rotation than in 1, (2) highly hindered internal rotation of the methyl group. IR and chemical shift data support the hypothesis of hyperconjugation of the methyl correlated with interaction between the pi-electrons and the 5d orbitals of tin in the (p-tolyl)Sn moiety to account for the hindrances to the rotations of the ring and the methyl. The activation barrier for the tolyl group rotation is found to be much higher than that for the phenyl rotation. However, the Woessner approach yields an anomalously high barrier for the methyl rotation. An explanation based on correlated rotations of the tolyl ring and the methyl is offered.  相似文献   

14.
Proton magnetic resonance absorption and spin-lattice relaxation measurements have been carried out for cyclopropane clathrate deuterate from 77 to 290 K together with spin—lattice relaxation measurements on solid cyclopropane from 90 to 146 K. The absorption measurement for the type I structure deuterate indicates the presence of an isotropic rotation of the cyclopropane molecule from about 230 K, while in the type II structure deuterate isotropic rotation of the enclathrated cyclopropane is present over all of the range of stability of the clathrate (~250 to 278 K). The spin-lattice relaxation measurements give an activation energy of 0.83 ± 0.03 kcal mole?1 for the barrier to reorientation (not assigned) of the cyclopropane molecules inside the clathrate deuterate cavities. In solid cyclopropane the barrier associated with the threefold axis rotation is found to be 4.8 ± 0.2 kcal mole?1.  相似文献   

15.
The usefulness of Raman and NMR spin relaxation spectroscopic methods in probing the details of molecular motions in liquids is demonstrated in a study of methyl iodide. Analysis of the lineshape of the ν3 Raman band of methyl iodide as a function of temperature yields values of the perpendicular component D of the diffusion tensor Di and an activation energy of reorientation perpendicular to the C3 axis of the molecule of 2.1 kcal/mole. Coupling the Raman data with 2D NMR spin relaxation data yields values of D| and an activation energy for reorientation about the C3 axis of 0.4 kcal/mole indicating quasi-free rotation for this motion. Thus the reorientational motions of methyl iodide are shown to be highly anisotropic in the liquid state.  相似文献   

16.
Thin films of spin-probed and spin-labeled poly(methyl methacrylate) (PMMA) have been examined by electron spin resonance (ESR) in the temperature range of 77–520°K. The rotational correlation times of nitroxides used as spin probes and labels have been determined as a function of temperature from which activation energies are also determined. The nitroxide rotational times are found to strongly correlate with local segmental and side-chain motions of the host PMMA matrix. Five discrete molecular motions are detected in PMMA along with their activation energies as measured: side-chain CH3 rotation (1 Kcal/mol), main-chain CH3 rotation (2 Kcal/mol), ester side-chain COOCH3 rotation around the C? C bond (4 Kcal/mol), main-chain C? C bond rotation (6 Kcal/mol), and side-chain OCH3 rotation around the C? O bond (18 Kcal/mol). The activation energies determined by ESR are consistent with the potential-energy barriers calculated theoretically for various rotations in PMMA. It is concluded that the probe and label rotational motions do respond to localized, small-scale segmental and side-chain motions of host polymers but are relatively ineffective in response to the large-scale segmental motion with an activation energy larger than 20 Kcal/mol in the case of PMMA.  相似文献   

17.
We present a detailed solid-state NMR characterization of the molecular dynamics of tert-butyl alcohol (TBA) confined inside breathing metal-organic framework (MOF) MIL-53(Al). 27Al MAS NMR has demonstrated that TBA adsorption induces the iX phase of MIL-53 material with partially shrunk channels. 2H solid-state NMR has shown that the adsorbed alcohol exhibits anisotropic rotations of the methyl groups around two axes and librations of the molecule as a whole about the axis passing through the TBA C−O bond. These librations are realized by two distinct ways: fast molecule orientation change during the translational jump diffusion along the channel with characteristic time τD of about 10−9 s at 300 K; slow local librations at a single coordination site, representing framework hydroxyl groups, with τl≈10−6 s at 300 K. Self-diffusion coefficient of the alcohol in the MOF has been estimated: D=3.4×10−10 m2 s−1 at 300 K. It has been inferred that both the framework flexibility and the interaction with framework hydroxyl groups define the dynamics of TBA confined in the channels of MIL-53 (Al).  相似文献   

18.
The temperature and pressure dependences of 35Cl nuclear quadrupole resonance (NQR) frequency and spin–lattice relaxation time (T1) were investigated for 1‐chloro‐2,4‐dinitrobenzene and 1,2‐dichloro‐3‐nitrobenzene. T1 was measured in the temperature range 77–300 K. Furthermore, the NQR frequency (ν) and T1 for these compounds were measured as a function of pressure up to 5.1 kbar at 300 K. Relaxation was found to be due to the torsional motion of the molecule and the reorientation motion of the nitro group. By analysing the temperature dependence of T1, the activation energy for the reorientation motion of the nitro group was obtained. The temperature dependence of the average torsional lifetimes of the molecules and the transition probabilities W1 and W2 for the Δm = ±1 and Δm = ±2 transitions, were also obtained. Both compounds showed a non‐linear variation of NQR frequency with pressure. The pressure coefficients were observed to be positive. A thermodynamic analysis of the data was carried out to determine the constant‐volume temperature coefficients of the NQR frequency. The spin–lattice relaxation time T1 for both the compounds was found to be weakly dependent on pressure, showing that the relaxation is mainly due to the torsional motions. Copyright © 2002 John Wiley & Sons, Ltd.  相似文献   

19.
The spin lattice relaxation in the excited triplet state of quinoxaline molecules in a perdeutero-naphthalene host crystal was investigated at high magnetic field (B = 5 T) between T = 1.7 K and T = 4.2 K. Relaxation rates were deduced from the non-monoexponential phosphorescence decay of the individual Zeeman sublevels. Besides the so far investigated Δm = 1 transition the Δm = 2 transition was observed and attributed to a purely direct process. Its anisotropy is different to that of the Δm = 1 direct process at 1.7 K. The temperature effect upon Δm = 1 relaxation anisotropy is discussed.  相似文献   

20.
Spin—lattice relaxation of non-interacting tunnelling methyl groups is determined by seven coupled parameters. For interacting methyl groups in a solid the number of parameters is reduced, by symmetry-restricted spin diffusion, to four, describing Zeeman, dipolar, tunnelling and rotational polarization systems.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号