首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 828 毫秒
1.
“微环”等离子体辐射和粒子损失测量   总被引:1,自引:0,他引:1  
本文报道了用高增益、快响应的钽酸锂热电探测器对“微环”托卡马克装置等离子体光辐射损失和粒子通量损失进行时空分辨测量的实验方法和结果。测量表明,在全部损失到壁上的功率中,中性粒子通量的贡献是主要的,光辐射损失只占小部分。对光辐射中不同波长的辐射功率进行了测量。  相似文献   

2.
HL—1M装置边缘等离子体测量   总被引:1,自引:1,他引:0  
本文研究了HL-1M装置运行初期第一壁材料对等离子体删削层杂质流通量及分布的影响,并与HL-1装置的结果进行比较。利用热通量探针测量,给出了HL-1和HL-1M装置删削层的热通量分布。在不同运行状态下,利用马赫探针组,测量了HL-1M装置边缘等离子体流的变化特性。  相似文献   

3.
托卡马克装置等离子体边缘和刮离层(SOL)物理的实验和理论研究是目前聚变装置中等离子体的杂质含量、杂质源分布以及SOL和芯部等离子体中各种杂质输运过程研究的重要课题之一。等离子体表面相互作用导致杂质的产生和随后杂质传输以及对芯部等离子体的污染。在孔栏和偏滤器靶板表面上易产生的离子通量的电荷态和能量通过物理贱射是确定杂质释放大小的最重要因素,而化学贱射是取决于表面形成的元素、碰撞的等离子体和表面温度。杂质传输强烈地取决于刮离层等离子体的背景特征,如温度、密度、传输效率和流速。  相似文献   

4.
本文对于用电荷交换方法或低杂波涨落的方法测量高能α粒子作了简短的评述,建议用核反应13C(α,n)16O测量氘-氚聚变等离子体中的高能α粒子,并提出了一种减少杂质污染,增加穿透深度的方法。  相似文献   

5.
应用LAS-2000二次离子质谱表面分析系统作了如下测量:(1)测出HL-1装置的总出气量以及其主要出气组分的出气量百分比和出气峰值温度等参数;(2)对等离子体-表面相互作用进行了SIMS/蒙特卡洛互补分析,测出等离子体边界层中氢气量径向特征长度和氢粒子注入硅片的特征深度,估算出氢通量平均动力温度;(3)对硅收集探针的SIMS/AES分析表明,HL-1等离子体删削层中主要杂质组分为O、C、Ni、Mo和Cr,同时给出原子密度相对百分比;在HL-1装置中用原位蒸钛来吸氧、碳杂质,从而提高了等离子体纯度和品质;(4)定期检测表明,装置的器壁表面污染呈减弱趋势,这说明HL-1真空系统的设计研制及运行维护技术措施等是合适的。  相似文献   

6.
在受控热核反应的研究中,等离子体的离子温度是实现受控“点火”的一个极重要的参数.应用红宝石激光的汤姆逊散射可以正确地测量等离子体的电子温度和电子密度.但要用来测量离子温度的话,则由于散射角太小,杂散光太大,在技术上变得非常困难.只有应用电荷交换的中性粒子能谱分析的方法才可以测量离子温度.可是,在较高的粒子密度或等离子体装置较大的情况下,由于等离子体的线度大于中性粒子的平均自由程,这种方法也就无法测量等离子体内部的离子温度.如果使用光谱分析的方法,由于存在杂质辐射,在技术上是很困难的.并且分辨率很差.因此,迄今为…  相似文献   

7.
在HL-lM装置上利用激光吹气技术,在等离子体边缘瞬态注入少量Al杂质粒子,通过对真空紫外光谱和软X射线区的杂质辐射测量,分别研究了欧姆等离子体和低杂波电流驱动等离子体两种情况下,Al杂质粒子输运与约束特性。结果表明:在欧姆等离子体和低杂波电流驱动等离子体两种情况下,等离子体中心区,在没有MHD锯齿震荡和有MHD锯齿震荡非锯齿破裂期间,杂质粒子输运基本上受新经典规律支配;在有MHD锯齿震荡锯齿破裂期间,杂质粒子输运受MHD不稳定性支配,但其时间很短(通常小于300μs),所以在这种情况下,杂质粒子输运的平均效应比新经典值稍大。而约束区杂质粒子输运则比新经典的值大很多,是反常的。在一定条件下低混杂波电流驱动可以改善等离子体粒子约束。  相似文献   

8.
HL-1装置辐射和粒子损失功率测量   总被引:3,自引:2,他引:1  
一、前言在等离子体中,由于杂质的存在,产生很强的线辐射、轫致辐射和复合辐射,电荷交换产生的中性粒子由于不受磁场约束而逃逸出等离子体。本文叙述用高增益、快响应的钽酸锂热电探测器对HL-1装置等离子体辐射和电荷交换粒子损失功率的测量。二、测量方法实验中采用了KT-3130钽酸锂(LiTaO_3)热电探测器和KTH-103前置放大器。LiTaO_3  相似文献   

9.
等离子体电位是托卡马克装置的一个重要参数。它的测量在放电机制、等离子体的平衡与稳定、等离子体-表面相互作用以及杂质控制等研究课题中有着极其重要的作用。 本文描述用朗谬尔探针,以及由它组成的对称双探钎系统(以下简称SDP系统)测量微环托卡马克边界区等离子体电位V_0的两种方法和结果。  相似文献   

10.
HL-2A装置边缘等离子体的扰动特性是通过中平面往复快速扫描气动6探针组来进行研究的。它在一次放电中能测量边缘等离子体参数的时空分布及其涨落量,以及静电涨落驱动的粒子通量和热通量在径向的变化。分析了在多发弹丸注入(MPI)、多脉冲超声分予束注入(SMBI)和电子回旋加热(ECRH)条件下的边界等离子体特性,研究边缘参数的涨落和相关特性。  相似文献   

11.
用密度调制的方法研究了等离子体中粒子输运问题。采用了注入脉冲式补充送气和超声分子束两种不同的密度调制方法。在HL-2A装置常规欧姆放电的情况下,运用有限差分法和Nagashima矩阵技术,求解了粒子平衡方程。计算出了粒子的输运系数(对流速度v和扩散系数D)。研究了粒子输运系数与等离子体线平均密度之间的关系。实验结果表明,在欧姆放电的情况下,等离子体芯部的粒子对流速度方向始终是向内的,并且密度低时,粒子输运系数(粒子扩散系数D和对流速度v)较大;密度高时,粒子输运系数较小。  相似文献   

12.
在欧姆放电和低混杂波电流驱动条件下,应用激光吹气技术注入金属杂质,用真空紫外谱仪测量了杂质线的辐射,给出了HL-1M 装置欧姆等离子体和低混杂波电流驱动等离子体杂质输运的研究结果。用杂质输运程序LBO进行数值模拟,得出了等离子体中杂质的扩散系数D(r) 和对流速度v(r)。在低混杂波电流驱动条件下,等离子体杂质的输运系数相对欧姆放电等离子体杂质的输运系数减小了50% 左右。结果表明,在HL-1M 装置上低混杂波电流驱动等离子体相对通常欧姆等离子体杂质的约束性能明显得到了改善  相似文献   

13.
用中平面往复快速扫描6探针组观测HL-2A装置边缘等离子体的扰动特性。在一次放电中能测量到边缘等离子体参数的时空分布及其涨落量,雷诺胁强与极向流和带状流的关系,以及静电涨落驱动的粒子通量和热通量的径向变化。在多发弹丸注入(MPI)和多脉冲超声分子束注入(SMBI)条件下,研究了边缘参数的涨落和相关特性。实验结果表明:SMBI和MPI等注入手段改变了边缘的扰动特性;雷诺胁强的径向梯度可以驱动带状流,抑制湍流输运。  相似文献   

14.
给出了在蒸钛和硼化实验中碳氧杂质以及中性氢的朝内通量的变化。在蒸钛实验中,碳氧杂质朝内通量减小2倍以上,中性氢的朝内通量减小40%,粒子循环系数由0.95降到0.85.在硼化实验中,碳氧杂质朝内通量减小60%左右,中性氢的朝内通量减小20%,粒子循环系数由0.95降到0.91左右.充分表明钛和硼化能有效地控制碳氧杂质的来源,改善粒子循环和杂质循环。  相似文献   

15.
给出了在蒸钛和硼化实验中碳氧杂质以及中性氢的朝内通量的变化。在蒸钛实验中,碳氧杂质朝内通量减小2倍以上,中性氢的朝内通量减小40%,粒子循环系数由0.95降到0.85.在硼化实验中,碳氧杂质朝内通量减小60%左右,中性氢的朝内通量减小20%,粒子循环系数由0.95降到0.91左右.充分表明钛和硼化能有效地控制碳氧杂质的来源,改善粒子循环和杂质循环。  相似文献   

16.
弹丸注入对HL—1等离子体锯齿活性的影响   总被引:1,自引:1,他引:0  
本文叙述了氢弹丸注入氘等离子体后锯齿活性的变化,测量表明,注入导致锯齿周期拉长或锯齿抑制,杂质聚中是锯齿活性变化的主要原因,注入改善了等离子体的粒子约束性能。  相似文献   

17.
高的边缘压强梯度的H模放电可提高将来聚变反应堆的经济可行性,然而高的边缘压强梯度容易产生ELM不稳定性,它通常能把大的粒子和热负荷排到偏滤器靶板,这些ELM模限制了芯部等离子体性能和降低了偏滤器靶板的寿命。为了维持稳态的高性能等离子体,横越等离子体边界的粒子和热输运能用于粒子和杂质分布控制,因此,任何消除或者缓解大而快的ELM脉冲技术必须用另一个慢的输运过程来代替瞬时的粒子和热输运,这种技术在ITER这样的燃烧等离子体装置中是高度优先的。  相似文献   

18.
在HL-2A装置偏滤器靶板上采用嵌入式静电三探针阵列和偏滤器室内的电动扫描四探针组测量了同一极向截面的内外中性化板上和偏滤器室内的电子温度、密度、悬浮电位、空间电位、电场、电子压强及其分布,研究了偏滤器中等离子体参数的分布及非对称性和脱靶等离子体运行模式下的等离子体行为,开展了偏滤器脱离靶板等离子体的实验研究。利用主真空室的快速往复扫描三台阶式六探针系统测量了主等离子体边缘和偏滤器室内的等离子体温度、密度、粒子通量和中性粒子密度等参数,研究了脱靶等离子体的形成过程、物理特性、控制方法,以及对主等离子体性能的影响。  相似文献   

19.
一、引 言 磁约束等离子体中少量杂质的存在会引起强烈的辐射能量损失[1],从而影响等离子体的能量平衡,也影响等离子体的电流分布、温度分布、以及稳定性和比压值,甚至影响未来聚变堆的点燃条件和堆的增益.因此杂质的研究是核聚变等离子体物理的重要领域.从1976年至今,国际上已经召开了五次核聚变装置中等离子体与表面相互作用的国际会议,对杂质的产生、杂质在等离子体中的作用、杂质的控制进行了广泛的研究.本文将着重从等离子体与器壁表面相互作用方面对杂质产生的机理作综合分析.包括热解吸,离子、电子、中性粒子和光子的诱导解吸,化学反…  相似文献   

20.
在CT-6B托卡马克装置上,用一米掠入射真空紫外单色仪测量了氧杂质各阶离子OII-OVI的谱线辐射的时间变化,用HCN远红外激光干涉仪测量了电子密度的时间变化。利用谱线时间史的方法,由谱线起始时间估算了放电初期电流上升阶段电子温度的时间变化。用数值计算分别考察了氧杂质进入通量和约束时间对谱线峰值强度和起始时间的影响。估算得到的电子温度在放电开始后0.36,0.56,0.66,0.90和1.4ms,分别为3.6,5.6,7.3,10.8和21eV,它们反映了放电初期等离子体中心区电子温度的变化。 关键词:  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号