首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 937 毫秒
1.
The article compares the relative stability of MCM-41 and related mesoporous materials in electron beam at an accelerating voltage of 100-300 kV. The work encountered in electron microscopy presents a comparison with similar research that has been carried out on nonporous and microporous silicates, especially alpha-quartz and zeolite Y. The trends in stability are analyzed, classifying the effects of sample preparation, organic and inorganic moieties, and electron accelerating voltage on beam stability. A higher synthesis temperature, the use of an acid catalyst in the synthesis, and the presence of additional organic or inorganic material within the channels were all found to stabilize these materials. The dose required to completely disrupt the structure increased with accelerating voltage for nearly all samples, suggesting a primarily radiolytic damage mechanism. The exception, MCM-41 containing nanometer-sized titania particles in its channels, was found to be almost insensitive to accelerating voltage.  相似文献   

2.
Capillary condensation of adsorbates in porous materials   总被引:1,自引:0,他引:1  
Hysteresis in capillary condensation is important for the fundamental study and application of porous materials, and yet experiments on porous materials are sometimes difficult to interpret because of the many interactions and complex solid structures involved in the condensation and evaporation processes. Here we make an overview of the significant progress in understanding capillary condensation and hysteresis phenomena in mesopores that have followed from experiment and simulation applied to highly ordered mesoporous materials such as MCM-41 and SBA-15 over the last few decades.  相似文献   

3.
以Si-MCM-41为硬模板,利用介孔材料的吸附作用,将Fe3+和Ni 2+按一定比例定量吸附组装到介孔材料的孔壁上;然后通过程序升温在900℃条件下高温焙烧,并经氢氟酸处理,得到直径大约为3.0nm的中空铁氧体纳米管.分别利用傅立叶变换红外光谱仪、扫描电镜、透射电镜、X射线衍射仪分析了合成材料的结构、组成、形貌;采用振动样品磁强计测定了其磁性能.结果表明,合成的镍铁氧体纳米管具有良好的管状形貌,其结构与分子筛MCM-41的结构相似,并具有良好的磁学性能.这说明MCM-41分子筛孔道结构具有可复制性,本研究可望为制备具有适当长径比的一维纳米磁性材料打下良好基础.  相似文献   

4.
The structural, morphological, and adsorption properties of MCM-41 porous silicas are investigated using a realistic numerical model obtained by means of ab initio calculations [Ugliengo, P.; et al. Adv. Mater.2008, 20, 1]. Simulated X-ray diffraction, small angle neutron scattering, and electronic microscopy for the atomistic model are in good agreement with experimental data. The morphological features are also assessed from chord length distributions and porous volume and specific geometrical surface calculations, etc. The N(2), CO(2), and H(2)O adsorption isotherms in the atomistic model of MCM-41 are also in reasonable agreement with their experimental counterpart. An important finding of the present work is that water forms a film adsorbed on specific hydrophilic regions of the surface while the rest of the surface is depleted in water molecules. This result suggests that the surface of MCM-41 materials is heterogeneous, as it is made up of both hydrophilic and hydrophobic patches. While adsorption and irreversible capillary condensation can be described using the thermodynamical approach by Derjaguin (also known as the Derjaguin-Broekhoff-De Boer model), the Freundlich equation fits nicely the data for reversible and continuous filling in small pores.  相似文献   

5.
Structures of Pt-nanowires, synthesized in channels of silica mesoporous materials MCM-41, SBA-15 and MCM-48, were investigated by transmission electron microscopy. One dimensional (1D) Pt-nanowires were formed inside the channels of the MCM-41, and were single crystals with a length of several tens to several hundreds nanometers and a diameter of ca. 3 nm pt-nanowires synthesized in SBA-15 formed a new 3D-network following 3D-pore geometry of SBA-15; that is, the main 1D-channels are interconnected to each other through randomly distributed tunnels. These Pt-nanowires showed a well single crystalline. MCM-48 has two non-intersecting chiral channels, and Pt-networks were mostly formed in one of the two channels. Therefore the networks were also chiral; however, the chirality of Pt-networks remained to be determined. It was shown that all Pt-nanowires were formed following the channel geometries of silica mesoporous materials used.  相似文献   

6.
Hexagonally ordered mesoporous silica material MCM-41 (SBET?=?1090?m2/g, pore size?=?31.2 ?) was synthesized and modified by 3-aminopropyl ligands. The differences in an uptake and subsequent release of anti-inflammatory drug naproxen from unmodified and amino modified MCM-41 samples were studied. The prepared materials were characterized by high resolution transmission electron microscopy (HRTEM) and scanning electron microscopy (SEM), nitrogen adsorption/desorption, Fourier-Transform Infrared Spectroscopy (FT-IR), Small-angle X-ray scattering (SAXS), thermoanalytical methods (TG/DTA) and elemental analysis. The amount of the drug released was monitored with thin layer chromatography (TLC) with densitometric detection in defined time intervals. The amounts of the released naproxen from mesoporous silica MCM-41/napro and amine-modified silica sample A-MCM-41/napro were 95 and 90% of naproxen after 72?h. In this study we compare the differences of release profiles from mesoporous silica MCM-41 and mesoporous silica SBA-15.  相似文献   

7.
Porous structures containing pores at different length scales are often encountered in nature and are important in many applications. While several processing routes have been demonstrated to create such hierarchical porous materials, most methods either require chemical gelation reactions or do not allow for the desired control of pore sizes over multiple length scales. We describe a versatile and simple approach to produce tailor-made hierarchical porous materials that relies solely on the process of drying. Our results show that simple drying of a complex suspension can lead to the self-assembly of droplets, colloidal particles and molecular species into unique 3D hierarchical porous structures. Using a microfluidic device to produce monodisperse templating droplets of tunable size, we prepared materials with up to three levels of hierarchy exhibiting monodisperse pores ranging from 10 nm to 800 μm. While the size of macropores obtained after drying is determined by the size of initial droplets, the interconnectivity between macropores is strongly affected by the type of droplet stabilizer (surfactants or particles). This simple route can be used to prepare porous materials of many chemical compositions and has great potential for creating artificial porous structures that capture some of the exquisite hierarchical features of porous biological materials.  相似文献   

8.
Surface properties of porous aluminosilicates of the MCM-41 type have been tested by immersional calorimetry. Two series of materials, referred to as SiAlxCn, where x is the Si : Al mole ratio and n the chain length of the surfactant template, having (1) x=32 and n=8, 12, 14, 16, 18 and (2) n=14 and x=8, 32, infinity, were used. The results of thermogravimetric analysis on these samples served to evaluate the surface density of hydroxyl groups. This parameter is rather sensitive to the pore size than to the aluminium content in the solid matrix. Based on the experimentally measured enthalpies of immersion in n-heptane, water, and formamide per unit BET specific surface area, estimates could be made of the apolar, Lewis acid, and Lewis base contributions to the total surface enthalpy of MCM-41 materials. The samples studied have a predominant surface acidic character, which is markedly enhanced by incorporating aluminium into the silica matrix. Surface acidity is also modified by changes in the porous structure, although the trends are less noticeable here. Nevertheless, the total surface enthalpy of MCM-41 aluminosilicates appears to be small in comparison with typical inorganic oxides, such as silica or alumina. Copyright 2001 Academic Press.  相似文献   

9.
MCM-41介孔分子筛掺杂的微孔型聚合物电解质的制备与表征   总被引:6,自引:0,他引:6  
以介孔分子筛MCM-41作填料,丙酮与二甲基甲酰胺混合液为溶剂,用直接造孔成膜的方法制备了微孔型聚合物电解质膜.该法避免使用造孔增塑剂,既简化了制膜工序,又减少电池中副反应的发生,使电池性能得以提高.MCM-41分子筛具有六方有序排列的单一柱状孔道结构和纳米级的粒子尺度,其骨架结构单元与一般聚合物电解质常用的纳米SiO2填料具有相同的化学成分,该分子筛堆积时形成的表面空隙及其独有的一维介孔孔道对聚合物电解质微孔的形成与连通、电导率的提高都具有重要作用,是一种极具实用价值的新型无机填料.  相似文献   

10.
AFM nanoindentations of diatom biosilica surfaces   总被引:3,自引:0,他引:3  
Diatoms have intricately and uniquely nanopatterned silica exoskeletons (frustules) and are a common target of biomimetic investigations. A better understanding of the diatom frustule structure and function at the nanoscale could provide new insights for the biomimetic fabrication of nanostructured ceramic materials and lightweight, yet strong, scaffold architectures. Here, we have mapped the nanoscale mechanical properties of Coscinodiscus sp. diatoms using atomic force microscopy (AFM)-based nanoindentation. Mechanical properties were correlated with the frustule structures obtained from high-resolution AFM and scanning electron microscopy (SEM). Significant differences in the micromechanical properties for the different frustule layers were observed. A comparative study of other related inorganic material including porous silicon films and free-standing membranes as well as porous alumina was also undertaken.  相似文献   

11.
Herein, Ni(II) immobilized on modified mesoporous silica MCM-41 was designed and synthesized via a facile sequential strategy. The structure of the catalyst was characterized by X-ray diffraction. The thermal property of the as-synthesized materials was studied using thermogravimetric-differential thermal analysis. The average particles size and morphology of MCM-41@XA@Ni(II) were investigated using scanning electron microscopy and transmission electron microscopy. This nanostructure catalyst was effective for the selective oxidation of sulfides and acetylation of alcohols in solvent-free conditions. The easy recyclability of the catalyst and their complete chemoselectivity toward the sulfur group of substrates in the oxidation of sulfides are important “green” attributes of this catalyst.  相似文献   

12.
《Supramolecular Science》1998,5(5-6):523-526
MCM-41 mesoporous molecular sieve materials with nanometer-sized pores show the very strong photoluminescent (PL) effect and the Al-depleted defect sites are responsible for this strong PL effect of the investigated MCM-41 samples. The porous channel structures of molecular sieves are another factor influencing the investigated PL effect.  相似文献   

13.
Rapid synthesis of highly ordered Si-MCM-41   总被引:2,自引:0,他引:2  
A very short-time synthesis of highly ordered MCM-41 molecular sieve was formulated by using cetyltrimethylammonium bromide (CTAB) as the template and silica gel from SiliCycle as the silica source. The physical properties of MCM-41 samples were characterized by X-ray diffraction (XRD), nitrogen physisorption, and transmission electron microscopy (TEM). The MCM-41 sample prepared in this study exhibited well defined long-range order and good hydrothermal stability. It was demonstrated that reducing the time of self-assembly step to 2 h during the synthesis had no unfavorable effect on the quality of MCM-41 materials.  相似文献   

14.
This study focuses on the MCM-41 material (Mobil Composition of Matter). The MCM-41 nanomaterial presents higher physical properties such as pore sizes, surface areas and pore volumes. This material is usually synthesized by using laboratory reagents as silicate sources and aluminium source. These laboratory reagents are still expensive and toxic for large scale production. The main aim of this work is to resolve this problem and to replace these expensive laboratory reagents by more cost effective ones. The volclay and Algerian bentonite low-cost mass clay materials are used as silicate and acuminate sources separately by adopting an alkaline fusion process to extract both silicon and aluminium (1 kg of silicium and aluminium from volclay and Algerian bentonite cost around 0.03 and 0.01 € whereas the same amount of silicon from ludox and aluminium from sodium aluminates cost around 350 €). The synthesis of MCM-41 from bentonite was carried out by the hydrothermal method using the supernatants of bentonite (in the form of sodium silicate and sodium aluminate). On the basis of the data obtained from powder X-ray diffraction (XRD), transmission electron microscopy (TEM) and N2 adsorption and desorption, the results revealed that the properties of MCM-41 synthesized from Algerian bentonite and volclay separately depend on both elemental composition and mineral phase contents of the used bentonite. Pure and highly ordered hexagonal mesoporous MCM-41 with uniform pore sizes and a high specific surface area have been successfully synthesized without any phases which exist in natural bentonite. The Algerian bentonite was chosen because of its low cost compared to volclay, another commercial clay source.  相似文献   

15.
In order to include phthalocyanine macromolecule in MCM-41 molecular sieve, a inclusion-suitable phthalocyanine derivative tetra-β-(2-(diethylamino)ethoxy) nickel phthalocyanine was synthesized, in two steps, from 4-nitrophthalonitrile and 2-(diethylamino)ethanol, and characterized by mass spectra, 1H nuclear magnetic resonance spectroscopy, ultraviolet visible spectroscopy, infrared spectroscopy and elemental analysis, which confirmed the proposed molecular structure. The inclusion of synthesized phthalocyanine compound in MCM-41 was carried out by the in situ synthesis method using cetyltrimethyl ammonium bromide as structure template and tetraethyl orthosilicate as silica source in presence of this phthalocyanine compound. The inclusion material was studied by means of X-ray diffraction, field emission scanning electron microscopy, high-resolution transmission electron microscopy, nitrogen adsorption isotherm measurements, etc. Results showed that the macromolecular compound was successfully included into MCM-41, the obtained inclusion material displayed mainly prisms and globes, and the material was a kind of mesoporous materials with regularly hexagonal honeycomb array of uniform cylindrical pores and high surface area.  相似文献   

16.
张红  刘小蒙  高云鹏  郭卓 《应用化学》2012,29(11):1272-1277
用含氨基的偶联剂修饰介孔分子筛MCM-41的表面,将修饰前和修饰后的介孔分子筛分别负载难溶性药物萘普生(NAP),利用X射线衍射、傅里叶变换红外光谱、差示扫描量热分析、扫描电子显微镜、透射电子显微镜和N2吸附 脱附分析等技术分别对其进行了结构表征和性能测试。 结果表明,药物分子存在于分子筛的孔道中。 负载在MCM-41中的萘普生溶出速率远优于原料药,60 min时大约溶出70%。 氨基修饰后的药物释放速率比修饰前有所减慢,表明可通过氨基修饰调节释放速率。  相似文献   

17.
利用水热合成的方法,使用新型的表面活性剂十六烷基三甲基对苯磺酸盐作为模板剂合成了高质量的MCM-48介孔分子筛,并用X-射线衍射(XRD)、扫描电镜(SEM)、高分辨透射电镜(HRTEM)以及N2吸附-脱附进行了表征。合成过程的研究表明该合成体系经历了三相,起始相为具有六方对称性的MCM-41,随着加热时间的延长,生成了具有立方对称性的MCM-48,进一步延长加热时间则生成了层状相MCM-50。三相转变发生的核心驱动力来自于表面活性剂有效堆积参数g因子的改变。另外,XRD、傅立叶变换的红外光谱(FT-IR)以及固体魔角自旋核磁共振(29Si MAS NMR)的表征结果证明:随着晶化时间的延长,相转变的同时伴随着介孔材料的孔壁逐渐由原子无序的非晶态向原子有序的晶态结构转变。最终形成的原子有序层状介孔分子筛可以作为扩孔型微孔分子筛合成的有效前驱体。  相似文献   

18.
The hydrophobic-hydrophilic properties of a solid are related to the material chemistry and, often, these properties are relevant to the applications of a particular material. Contrarily to what happens with other properties, such as specific surface areas or pore volumes, the methodologies to ascertain on the hydrophilicity of a porous material are not well defined. In this work, we discuss and relate the information on the hydrophobicity degree obtained from water adsorption isotherms and from diffuse reflectance infrared Fourier transform (DRIFT), in a set of porous materials. The studied materials were mainly mesoporous solids, namely of MCM-41 and SBA-15 types, two xerogels and also different porous clays heterostructures. Both techniques were informative on the hydrophobic-hydrophilic properties of the studied samples, but the correlation between the information obtained by each technique was not straightforward. Water adsorption isotherms are much more sensitive to the differences of the studied materials than the DRIFT spectra. For silica-based mesoporous materials with similar surface chemistry, the water adsorption process and hence, the hydrophobic-hydrophilic properties, is mainly dependent on the pore diameters. However, water adsorption is much more sensitive to changes in the nature of the adsorbent surface than to changes in the pore diameter.  相似文献   

19.
A new organic–inorganic hybrid mesoporous MCM-41 type material has been synthesised by co-condensation of tetraethyl orthosilicate (TEOS) and 1,4-diazobutadiene (DAB) ligand RNC(Ph)–C(Ph)NR where R = (CH2)3Si(OEt)3, in the presence of cetyltrimethylammonium bromide as the structure-directing agent. Surfactant extraction using acidified methanol leaves a hybrid mesoporous material with periodical hexagonal channels, large pore volume and high specific surface area. The material was characterised by powder X-ray diffraction, transmission electron microscopy, nitrogen gas adsorption, 13C and 29Si solid-state NMR, FTIR, elemental and thermogravimetry. The ordered structure and the integrity of the ligand structure are preserved after the extraction step.  相似文献   

20.
Surface modification offers a great opportunity to adjust both the pore diameter and surface properties of MCM-41 type organic–inorganic hybrid materials which result in materials of improved hydrothermal and mechanical stability. Therefore, MCM-41 silica, surface modified with organic ligands, are promising systems with engineered properties and attractive for advanced applications. In the present study, after optimization of the reaction conditions highly ordered MCM-41 silica spheres with uniform mesopores were prepared by the pseudomorphic transformation route. The effect of functionality and alkyl chain length of the alkyl ligands during surface modification was probed by using butyl and octylsilanes with two different functionalities. Due to steric hindrance, the longer chains are assumed to bind only on the outer silica surface and near the entrance of the pores, while the shorter chains are also able to bind to the interior mesopore walls. The resulting materials were comprehensively characterized before and after surface modification using nitrogen sorption techniques, XRD, SEM, solid-state NMR spectroscopy and FTIR spectroscopy. From chromatographic test measurements it was found that the separation power primarily depends on surface coverage and alkyl chain length. On the basis of the present data, surface modified mesoporous silica of MCM-41 type are very promising candidates for future chromatographic applications.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号