首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   229篇
  免费   9篇
  国内免费   2篇
化学   165篇
晶体学   3篇
力学   7篇
数学   34篇
物理学   31篇
  2023年   3篇
  2021年   2篇
  2020年   7篇
  2019年   5篇
  2018年   3篇
  2017年   5篇
  2016年   3篇
  2015年   7篇
  2014年   8篇
  2013年   13篇
  2012年   12篇
  2011年   21篇
  2010年   9篇
  2009年   14篇
  2008年   24篇
  2007年   10篇
  2006年   23篇
  2005年   16篇
  2004年   15篇
  2003年   5篇
  2002年   11篇
  2001年   3篇
  2000年   2篇
  1999年   1篇
  1998年   3篇
  1997年   3篇
  1994年   1篇
  1993年   2篇
  1991年   2篇
  1990年   1篇
  1988年   2篇
  1983年   2篇
  1982年   1篇
  1976年   1篇
排序方式: 共有240条查询结果,搜索用时 15 毫秒
1.
A new, wide-band, high-speed and high-sensitivity THz detector has been developed. The prototype detector consists of a parabolic cylindrical mirror, a long wire antenna and a Schottky barrier diode. Direct detection measurements have shown a stable sensitivity of 150 ± 50 V/W for 1–2 THz without any adjustments. The long wire antenna was fixed at the focus of parabolic cylindrical mirror then it has been realized less operation steps, easy coupling to the external THz signals and a dramatic enhancement in the practicality of this system. The optically polished mirror and frosted surface one showed comparable sensitivities, thus easy polishing and less cost mirror fabrication can be applied for this system. The radiation pattern showed a maximum radiation angle of approximately 23° with its dominant main lobe, which was attributed to the wire antenna character and confirmed good agreements with classical antenna theory.  相似文献   
2.
Enzyme heterobilayer-modified electrodes were fabricated by successively covalently binding to the surface of a tin(IV) oxide plate horseradish peroxidase (HRP), then an oxidase (lactate, pyruvate or cholesterol oxidase or uricase), which liberates hydrogen peroxide by reaction with the respective substrate. The cooperative action of oxidase-HRP leads to an efficient amperometric sensor system with the minimum amount of enzyme immobilized on an electrode.  相似文献   
3.
High-resolution electron microscopy (HREM) has been used to image the surface structure of nano- and micrometer-sized synthetic crystals of zeolite-Linde-L (LTL). Columnar holes and rotational, nano-sized, wheel-like defects were observed within the crystals, where the hole has a minimum size equal to that of the rotational defect. Predictions of surface structure from atomistic computer simulation concur with the observations from HREM and provide insight into the crystal growth mechanism of perfect and defective LTL. Analysis of the energetics of the formation of rotational defect structures reveals that the driving force for defect creation is thermodynamic and furthermore, the rotational defects could be created in high concentrations. Formation of a columnar hole is found to be slightly energetically unfavourable and therefore we speculate that the incidence of both rotational and nano-sized vacancy defects is strongly dependent on kinetic factors and reaction conditions. The morphology of nano- and microcrystalline LTL is contradistinct and we use insights from simulation to propose an explanation of the disparity in crystal shape.  相似文献   
4.
We report the first observation of 77Se nuclear magnetic resonance (NMR) in octaneselenol-protected Au nanoparticles of an average particle size of 2.5 nm. The 77Se NMR characteristics observed, i.e., broad line shape, fast nuclear spin-lattice, and spin-spin relaxation rates, which are reminiscent of 13C NMR of CO on transition metal surfaces, strongly suggest that Se becomes metallic upon binding to the Au nanoparticle surfaces.  相似文献   
5.
This article describes a number of important recent microscopy tools and their application in particular to the study of porous inorganic materials. The authors believe that these new techniques are on the threshold of delivering enormous new power in the chemist's arsenal for understanding new and complex behaviour in multi-component, hierarchical or composite materials. In particular we consider the contribution of electron crystallography, three-dimensional electron tomography, ultra-high resolution scanning electron microscopy as well as the combined application of high-resolution electron microscopy and atomic force microscopy to the study of surfaces and crystal growth. Much of this work has taken on a particular significance owing to the ground breaking work of scientists at Mobil and in Japan 10 years ago in the successful synthesis of materials with porosity on many length scales achieved through the cooperative self-assembly between inorganic and organic phases. This resulted in a series of materials known as M41S of which MCM-41 and MCM-48 were two of the first and most important structures to be synthesised. This has led to a wealth of new porous structures with order over many length scales and has presented new problems in characterisation. Microscopy methods properly executed are particularly important in the study of this new class of material.  相似文献   
6.
7.
trans-11,12-Epoxy-(6Z,9Z)-6,9-henicosadiene (posticlure) has been identified from a pheromone gland of the lymantriid species, Orgyia postica. Since the diversity of Lepidoptera suggests that some species utilize the structure-related epoxy compound as a sex pheromone component, epoxydienes and epoxytrienes derived from (6Z,9Z,11E)-6,9,11-trienes and (3Z,6Z,9Z,11E)-3,6,9,11-tetraenes with a C19–C21 chain were systematically synthesized and the chemical data were accumulated in order to contribute to a new pheromone research. Peracid oxidation of each triene and each tetraene produced, respectively, a mixture of three epoxydienes (cis-6,7-epoxy-9,11-diene; cis-9,10-epoxy-6,11-diene; and trans-11,12-epoxy-6,9-diene) and four epoxytrienes (cis-3,4-epoxy-6,9,11-triene; cis-6,7-epoxy-3,9,11-triene; cis-9,10-epoxy-3,6,11-triene; and trans-11,12-epoxy-3,6,9-triene). While the 9,10-epoxy compounds were unstable and, interestingly, converted into 9-ketone derivatives after chromatography over SiO2, each positional isomer was isolated by HPLC equipped with an ODS column, and the chemical structure was determined by NMR analysis. On the GC-MS analysis with a DB-23 column, the positional isomers were also eluted separately and characteristic mass spectra were proposed. By comparing the spectral data of the epoxy compounds with a different carbon chain, diagnostic fragment ions reflecting the chemical structure were determined as follows: m/z 79, 109, 113, and M-114 for the 6,7-epoxydienes; m/z 69, 97, 111, 139, and M-111 for the 9,10-epoxydienes; m/z 57, 79, 109, 136, M-151, and M-111 for the 11,12-epoxydienes; m/z 79, 91, 105, and 119 for the 3,4-epoxytrienes; m/z 79, 124, M-124, M-96, and M-69 for the 6,7-epoxytrienes; m/z 79, 95, 109, 137, and M-108 for the 9,10-epoxytrienes; and m/z 79, 134, M-149, M-109, and M-95 for the 11,12-epoxytrienes.  相似文献   
8.
As advanced negative electrodes for powerful and useful high‐voltage bipolar batteries, an intercalated metal–organic framework (iMOF), 2,6‐naphthalene dicarboxylate dilithium, is described which has an organic‐inorganic layered structure of π‐stacked naphthalene and tetrahedral LiO4 units. The material shows a reversible two‐electron‐transfer Li intercalation at a flat potential of 0.8 V with a small polarization. Detailed crystal structure analysis during Li intercalation shows the layered framework to be maintained and its volume change is only 0.33 %. The material possesses two‐dimensional pathways for efficient electron and Li+ transport formed by Li‐doped naphthalene packing and tetrahedral LiO3C network. A cell with a high potential operating LiNi0.5Mn1.5O4 spinel positive and the proposed negative electrodes exhibited favorable cycle performance (96 % capacity retention after 100 cycles), high specific energy (300 Wh kg?1), and high specific power (5 kW kg?1). An 8 V bipolar cell was also constructed by connecting only two cells in series.  相似文献   
9.
Mg-metal-anode rechargeable battery (MRB) has been a promising candidate for next-generation batteries with high energy densities and high safety. The lack of high-performance cathode materials, however, retards the development of MRBs. In recent years, it has been revealed that various spinel oxides can accommodate a large amount of Mg, exhibiting relatively high potentials (2–3 V vs. Mg2+/Mg) and high capacities (150 mAh g?1) accompanied by the coherent structural transformation into the rocksalt structure. This review summarizes the recent progress in the development of such spinel–rocksalt transition materials from the viewpoints of the reaction mechanisms, design guidelines of spinel oxides (for tailoring the redox potential, volume change, and cyclability), and challenges to construct full-cell MRBs.  相似文献   
10.
We report the development of a novel form of diffraction-based 3D microscopy to overcome resolution barriers inherent in high-resolution electron microscopy and tomography. By combining coherent electron diffraction with the oversampling phasing method, we show that the 3D structure of a nanocrystal can be determined ab initio at a resolution of 1 A from 29 simulated noisy diffraction patterns. This new form of microscopy can be used to image the 3D structures of nanocrystals and noncrystalline samples, with resolution limited only by the quality of sample diffraction.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号