首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
分析了速率偏频激光陀螺过锁区的误差特性。根据激光陀螺的闭锁方程,分别从数值模拟和理论分析两种途径对速率偏频激光陀螺过锁区误差特性进行了研究。结果一致表明:速率偏频激光陀螺过锁区的误差与锁区大小成正比,与过锁区的加速度的平方根成反比,与刻度因子的平方根成反比。文中具体给出了速率偏频激光陀螺过锁区的误差方程。过锁区误差为速率偏频激光陀螺的主要误差源。  相似文献   

2.
机抖机构是一个工作于谐振状态的精密机电元件,当环境温度发生变化时,机抖的抖动偏频量将发生变化,这将引起角度随机游走误差的变化,并导致激光陀螺的零偏稳定性变差。本文推导了机械抖动激光陀螺的抖动速率与激光陀螺输出误差的关系表达式,提出了均方意义下的等抖动速率控制保持激光陀螺零偏稳定性的方法,并且通过实验具体研究了电磁式机械抖动装置的温度特性及其对激光陀螺零偏稳定性的影响。仿真实验与实测数据结果表明:在全温度范围内保持机抖机构抖动速率的一致性能有效地提高激光陀螺的零偏稳定性。  相似文献   

3.
激光陀螺POS惯性数据滤波及时延补偿   总被引:1,自引:0,他引:1  
激光陀螺作为位置姿态测量系统(POS)的核心传感器,其精度直接决定激光陀螺POS系统精度,围绕机抖激光陀螺信号去噪的需求,基于FIR滤波器建模的方法,设计了FIR数字低通滤波器;针对滤波器导致的信号延迟问题,根据FIR数字滤波器群延迟特性建模,提出了激光陀螺POS数据时延补偿方法。静态实验结果表明,设计的FIR数字低通滤波器降低了激光陀螺抖动噪声功率达80dB。进一步通过飞行实验表明,提出的方法降低了激光陀螺POS系统姿态角误差,与POS/AV510相比航向角误差由0.017°降低到0.01°,俯仰角误差由0.007°降低到0.005°,横滚角误差由0.016°降低到0.005°,满足了机载InSAR对激光陀螺POS精度要求。  相似文献   

4.
小波滤波在单轴机抖激光陀螺输出信号处理中的应用   总被引:1,自引:2,他引:1  
单轴机抖激光陀螺仪采用抖动偏频方案消除闭锁,于是陀螺输出信号中不仅包括外界输入的有用角速率信息,也包含了抖动信号和各种高频噪声,应用之前必须有效地去除抖动信号和各种高频噪声.本文采用小波阈值滤波方法对某型单轴激光陀螺输出信号进行了处理,选用Daubechies小波函数作为小波基,以强制消噪的方法,分别用db8,db6,db4小波和不同的小波分解层数对信号进行了滤波,发现采用db4小波对机抖激光陀螺输出信号的滤波效果最优,为工程应用打下了基础.  相似文献   

5.
速率偏频技术提高激光陀螺精度的理论研究   总被引:6,自引:3,他引:3  
以分析激光陀螺主要误差源出发点,从理论上研究了速率偏频技术的作用,指出它可有效地降低激光陀螺锁区引入的随机游走误差,部分地补偿激光陀螺谐振腔中的光束位移引起的不可控激光陀螺的零偏误差,并可解决拦动激光陀螺在系统使用中的锥形误差(Coning Error)和划桨误差(Sculling Error)。利用激光陀螺的拍频方程和拦动偏频激光陀螺的拍频近似解,得出了速率偏频激光陀螺随机游走误差与速率偏频系统参数的表达式,并指出了速率偏频技术的特点及速率偏频技术要解决的主要技术问题。  相似文献   

6.
针对振动环境下机抖激光陀螺敏感轴产生动态偏移造成惯导系统精度下降的问题,从理论上推导了机抖激光陀螺敏感轴动态偏移误差模型,并结合工程实际建立了简化的误差模型;在此简化误差模型基础上,推导了陀螺敏感轴动态偏移造成的等效陀螺漂移与比力、角速度的耦合关系;将机抖激光陀螺敏感轴动态偏移误差归结为9个待辨识参数,针对该模型中的待辨识参数设计了标定方法,并给出了标定实验设计原则;以姿态误差为观测量进行振动实验对待辨识参数进行估计,振动实验结果表明,在10 min线振动时间内,机抖激光陀螺敏感轴动态偏移误差补偿后,捷联惯导系统纯惯导速度误差减小30%以上。  相似文献   

7.
机抖激光陀螺动力学特性研究   总被引:1,自引:2,他引:1  
在构建激光陀螺捷联系统时,三个激光陀螺安装在同一个基座上.由于三个陀螺振子都在进行高频角振动,激励基座产生耦合振动,造成陀螺是在振动基座环境下工作,引起激光捷联系统的抖动耦合误差,导致系统导航精度下降.采用有限元方法研究了机抖激光陀螺的动力学特性和振动模态,以及机抖激光陀螺的振子抖动对基座的影响和外界激励条件下陀螺的响应.通过压电陶瓷激励下陀螺的频率响应分析,实现了激光陀螺工作状态下的动力学仿真,可以获得陀螺工作时激光陀螺任意位置的动力学响应信息,从而为激光陀螺和基座的结构设计提供评判依据,也为分析激光捷联系统的抖动耦合误差开辟了新途径.  相似文献   

8.
基于长期变形、动态挠曲变形以及陀螺随机零偏的状态方程,构建了激光陀螺测量的惯性姿态匹配最优滤波器,可以实时地估计出船体变形角。针对实时估计的长期变形角具有偏置误差的问题,推导了惯性姿态匹配的误差方程,指出动态挠曲变形角与船体惯性姿态角之间具有长时间的交叉相关耦合作用导致了长期变形角估计具有偏置误差,并提出了对输入到最优滤波器的激光陀螺角增量进行自适应补偿的方法来抑制偏置误差。实验结果表明,补偿后俯仰角、横滚角和艏挠角的偏置误差均方根均小于5″,较补偿前降低均方根误差约为5″,该自适应补偿方法可有效地抑制偏置误差,提高惯性姿态匹配方法在船体变形测量应用中的有效性。  相似文献   

9.
二频机抖激光捷联系统结构振动分析   总被引:2,自引:1,他引:1  
二频机抖激光捷联系统中三个激光陀螺抖动会引起惯性器件的耦合振动,产生系统抖动耦合误差,导致惯导系统导航精度下降。二频机抖激光陀螺捷联惯导系统机械结构较为复杂,很难通过解析法求解其振动特性。作者采用有限元方法对二频机抖激光陀螺进行了正弦信号驱动下的瞬态响应分析,并在正弦信号中加入了抖动随机信号,实现了机抖激光陀螺工作状态的仿真。此外,还对二频机抖激光捷联系统的振动特性进行了瞬态响应分析,掌握了系统的耦合振动情况,并进行了功率谱分析。这为激光捷联系统的频率搭配最优化提供了分析方法,对高精度二频机抖激光捷联系统的设计有重要意义。  相似文献   

10.
干涉式光纤陀螺的标度因数稳定性进一步提升受限于宽谱光源平均波长扰动水平,影响了其对于旋转速率的测量精度以及在复杂环境下的长期使用。采用中心波长更稳定的激光能有效提升光纤陀螺的标度因数性能,但是激光的线宽窄,会重新引入宽谱光源已经基本消除的主要误差源。针对以激光作为干涉式光纤陀螺驱动光源的应用背景,基于光物理场方程计算得出干涉式光纤陀螺中克尔效应、偏振耦合以及背向散射误差与激光线宽的关系,并定量分析出在激光谱宽范围内的各项误差源。此外搭建了光纤陀螺实验系统,分别以窄线宽激光和通过外部相位调制进行光谱展宽后的激光为光源进行静态测试验证。实验结果表明,不同光源线宽下陀螺的角度随机游走和漂移同理论模型一致,证明了模型的正确性,且光纤陀螺在展宽激光驱动下,可满足零偏不稳定性优于0.01?°/h的导航级需求。  相似文献   

11.
圆锥误差是影响捷联惯导系统姿态算法精度的原理性误差,其对三轴激光捷联惯导系统精度的影响显著.对三轴机抖激光陀螺捷联惯导系统,除了弹体运动可能引入圆锥运动外,三轴机抖激光陀螺产生的机械抖动也会在惯导系统中引入圆锥运动.文中分析了两种圆锥运动在三轴激光捷联惯导系统中产生的机理,并给出了圆锥误差补偿算法在不同试验条件下的应用效果.  相似文献   

12.
机抖激光陀螺通过在抖动驱动信号中注入一定强度的随机噪声来消除动态闭锁误差.为了适应机抖激光陀螺小型化和其控制电路数字化的发展,设计了在以抖动驱动信号采用方波形式的基础上,其随机噪声的注入采取了应用寄存器产生的伪随机噪声-m序列按照对方波占空比进行调制的方式,并建立了抖动机构的数学模型,应用所建立的模型通过Matlab中的Simulink进行了仿真.依照随机噪声注入效率的计算方法,文中采用的方式其噪声注入效率要高于以往采用的应用高斯白噪声对交变正弦波驱动信号进行幅值调制的方式,对此进行了实验验证,证明这种随机噪声注入方式效果良好.  相似文献   

13.
在全温范围内应用的光纤陀螺,其输入轴失准角随温度的变化是影响光纤陀螺惯性系统性能的重要指标之一。特别是在大角速率或者高精度应用时,失准角的变化误差甚至超过零偏漂移误差和标度因数误差。采用温度补偿技术是一种提升光纤陀螺温度性能的有效方法,其中建立精确的温度模型是关键。提出了一种连续旋转的光纤陀螺全温失准角快速建模补偿方法。基于单轴速率转台的连续旋转,可以有效识别光纤陀螺失准角在全温范围内的变化拐点,提高建模和补偿的精度。试验结果表明,某型光纤陀螺全温输入轴失准角变化约14″,补偿后全温输入轴失准角变化小于1″,精度提高了一个数量级以上。在高精度光纤陀螺惯性系统中,该方法可用于指导光纤陀螺失准角的实时温度补偿技术研究及工程实现。  相似文献   

14.
分析了四频差动激光陀螺漂移信号的特性,将陀螺输出的漂移误差信号分为常值漂移误差和随时间变化的一次项、二次项漂移误差,并据此建立陀螺漂移误差模型,分别对陀螺漂移进行零次拟合、一次拟合及二次拟合.针对这些模型结合寻北推导了误差的补偿算法,并通过寻北实验精度比较,验证了不同误差模型的补偿效果.实验结果表明,就本文实验所用陀螺,含二次项误差的模型寻北精度较高,使寻北精度从零次拟合模型的1密位降低到0.5密位.  相似文献   

15.
为了有针对性的消除激光陀螺速率偏频惯导系统的可补偿寻北误差,进一步提高航向精度,从速率偏频斜装惯性仪表的数学模型出发,对陀螺和加速度计的各项误差进行了寻北误差分析,基于捷联惯导对准误差公式给出了惯性仪表各误差源的影响量级。明确了引起倾斜状态航向敏感误差的主要因素,提出了以调整激光陀螺旋转轴方向陀螺零偏抵消激光陀螺标度因数不对称性误差或者速率偏频状态陀螺零位偏移的航向敏感误差补偿措施。经转台试验验证,该措施简单可靠,有效消除了倾斜状态航向敏感误差,速率偏频系统的全方位寻北精度能够从86'(3σ)提高到优于40'(3σ)。  相似文献   

16.
基于最小概率DWO的激光陀螺温度误差模型辨识   总被引:1,自引:1,他引:0  
鉴于激光陀螺温度误差模型的非线性和时变性,从提高模型辨识质量的需要出发,运用基于最小概率DWO(直接加权优化)的非线性系统辨识方法进行激光陀螺温度误差模型辨识研究,提出了一种精度更高的激光陀螺温度误差模型。该模型以带宽作为唯一需要确定的模型参数,避免了以往温度误差模型研究中的结构与参数辨识等复杂问题,从而在保证模型辨识质量的基础上,也相应提高了模型的适应能力,并通过两种温度误差特性有显著区别的激光陀螺(四频差动激光陀螺和二频机抖激光陀螺)的温度实验数据验证了该模型的正确性和适应性。  相似文献   

17.
激光陀螺仪的精度指标为零偏稳定度、噪声和标度因数的稳定度。闭锁阈值直接影响激光陀螺仪的精度。本文介绍了闭锁阈值的计算公式,分析了激光陀螺仪的主要误差来源。在此基础上,指出减小谐振光路中损耗和采用速率偏频技术是提高激光陀螺仪精度的主要技术关键。  相似文献   

18.
复杂温变环境下的激光陀螺零偏补偿方法   总被引:1,自引:0,他引:1  
在高精度捷联惯导系统中,激光陀螺零偏随温度的变化往往不能忽略.基于不同温变环境下的激光陀螺零偏测试实验,分析了激光陀螺的零偏温度漂移特性,研究了陀螺零偏与温度变化、温变速率和温度梯度之间的相关关系,说明了在复杂或快速的温变环境中,激光陀螺零偏除与温度值变化有关外,其受温变速率和温度梯度的影响更为显著.建立了适用于缓变温度环境的静态温度模型和适用于复杂温变环境下的动态温度模型,并在快速温变和随机温变环境下对模型进行了试验验证.结果表明,动态温度模型能很好地实时补偿复杂温变引入的陀螺零偏异常,显著改善陀螺零偏稳定性使其达到或接近常温精度水平.  相似文献   

19.
针对光纤陀螺惯性测量单元全温动态环境下测量误差问题,提出一种全温三方位正反速率/一位置标定及分段线性插值补偿方法,建立了光纤陀螺惯性测量单元误差模型,在每个恒温点设计三方位正反速率/一位置标定方案。采用分段线性插值算法实时补偿系统零偏和标度因数温度误差,系统全温环境下的测量精度提高5倍左右。车载实验结果表明,采用该方法后系统4200 s纯惯性姿态测量误差小于1°。  相似文献   

20.
考虑机抖激光陀螺信号滤波特性的圆锥算法修正   总被引:2,自引:4,他引:2  
捷联惯导系统一般用圆锥算法来补偿其圆锥运动漂移,标准的圆锥算法是以理想的陀螺信号为输入设计的,而机抖激光陀螺常用数字低通滤波器来滤除抖动偏频信号,由于滤波器的非理想性,滤波后信号的幅频特性发生畸变,引入了较大的圆锥算法误差。参考标准圆锥算法误差公式,用相对圆锥误差分析方法比较研究了算法的误差变化特性,证明误差大小与滤波器通带特性有关。基于经典圆锥运动,推导了数据滤波后修正的圆锥算法公式。修正算法考虑了滤波器幅频特性的影响,补偿了滤波器引入的圆锥算法误差。仿真表明:修正算法在保证滤波器较小延时的同时,能明显减小算法精度损失,提高姿态算法整体精度水平。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号