首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
谐振式光纤陀螺使用窄线宽激光器作为光源以得到较好的谐振特性,而激光光源线宽会受驱动电流、温度等的影响发生不同程度的展宽,从而影响标度因数。为探索激光器线宽对谐振式光纤陀螺标度因数的影响,利用光源与谐振腔的卷积模型建立陀螺谐振腔输出的解调曲线模型,基于该模型分析激光器线宽对陀螺谐振腔解调曲线斜率的影响,进一步得出激光器线宽展宽会非线性地减小标度因数的结论。完成了实验验证,并以半高全宽为300 kHz的谐振腔为例,给出了标度因数变化范围限制在1%以内时,激光器线宽需控制在3 kHz以内的结论。为谐振式光纤陀螺中激光器的选择以及驱动电路的设计提供了理论基础。  相似文献   

2.
基于激光器驱动的干涉型光纤陀螺是近年来国内外光纤陀螺研究的新热点,但半导体激光器作为一种窄线宽的高相干光源,将其用于干涉型光纤陀螺又会重新引入瑞利散射、Kerr效应和偏振交叉耦合等非理想特性进而影响陀螺的精度,因此有必要将半导体激光器的线宽加宽后再使用。为实现半导体激光器的线宽展宽,建立了基于高斯相位调制的光谱展宽卷积模型,利用OptiSystem仿真分析验证线宽展宽效果;通过搭建光路进行实验验证,实验结果证明,通过所提出的展宽方法可以将线宽10 MHz的激光器的光谱展宽成线宽11 GHz的光谱。为干涉型光纤陀螺中半导体激光器的应用提供了基础保证,具有一定的工程应用价值。  相似文献   

3.
为了提升光纤陀螺在工作温度范围内的标度因数稳定性,提出了一种使用滤波器和探测器阵列对光源光谱平均波长漂移进行实时监测的技术方案。光纤陀螺光源光谱通常为平滑的类高斯函数,理论上可以借助少数采样点在较小的误差范围内计算其积分值,因此可以测量光源几个特定波长处的光强,结合适当的数值积分算法,计算其平均波长漂移。以掺铒光纤光源的左峰(中心波长约1530 nm)为例,分析了滤波器参数以及积分方法对监测精度的影响,结果表明当初级滤波器带宽为5 nm,次级滤波器带宽为1 nm,采用Gauss-Legendre积分法时,计算值与测量值的误差小于0.2×10~(-6)。实时监测结果可用于波长反馈控制或标度因数补偿,进一步提升光纤陀螺的环境适应性。  相似文献   

4.
高精度惯性导航系统对由温度引起的光纤陀螺标度因数变化指标提出了很高的要求。采用温度补偿技术是一种提升标度因数性能的有效方法,其中建立精确且普适的温度模型是关键。提出并分析了光纤陀螺温度与标度因数模型的迟滞现象。通过分析和试验表明,标度因数模型的迟滞现象是由光纤陀螺结构的热不均匀性造成的,采用多温度点采样来修正标度因数模型的方法可以有效避免模型的迟滞现象,提升标度因数模型的补偿效果,使光纤陀螺可以适应各种温度变化的环境。在-40℃~+60℃范围内同时对光纤环圈和光源的温度进行采集,并利用光源温度与平均波长的关系来修正标度因数模型,通过模型修正可以将光纤陀螺全温标度因数稳定性指标由常规模型下的36×10~(–6)提升到12×10~(–6)。  相似文献   

5.
为了进一步提高光纤陀螺标度因数的测试精度,对光纤陀螺标度因数测试过程进行理论分析,确定了影响光纤陀螺标度因数测试误差的主要因素,并进行了计算机仿真和实验验证。结果表明:由于安装误差、北向地速分量以及转台速率精度的影响,光纤陀螺测试起始位置和采样时间的选择均会给小速率标度因数不对称性和非线性度的测试带来误差,而大速率标度因数的测试基本不受影响;通过对各输入速率点进行整圈采样,可以有效地降低小速率标度因数的测试误差,使其测试精度提高1个量级以上,实现对光纤陀螺标度因数性能更加准确的测试。  相似文献   

6.
针对光纤陀螺启动过程标度因数变化大、稳定时间长的问题,提出标度因数补偿方案。分析了光纤陀螺启动过程中标度因数误差及超辐射发光二极管平均波长随温度变化误差产生的物理机制,建立了启动过程中标度因数误差的数学模型。进一步提出了一种通过测量温控电桥电路THERMIN端电压实时补偿启动过程标度因数的方案。试验结果表明,启动过程中(2 s内)光纤陀螺标度因数误差峰峰值从约25 000×10~(-6)降低到小于300×10~(-6),大幅提高了启动过程标度因数性能,满足了武器系统的快速启动需求。  相似文献   

7.
光谱不对称性是宽带光源的非理想特性之一,这种特性对标度因数的影响在中高精度光纤陀螺中会逐渐显现出来。为了分析光谱不对称性及其对光纤陀螺的影响,结合光纤陀螺所用宽带光源的典型光谱参数,对宽带光源的光谱不对称性进行了理论计算,分析了传统量化光谱不对称性方法存在的问题和局限性,并在此基础上提出了一种更加准确合理的光谱不对称性的量化指标。研究表明,光谱不对称性会产生相对相位误差,并在调制通道中产生视在增益误差,导致陀螺第二反馈回路"错误"调整调制通道的增益,引起光纤陀螺标度因数的非线性误差。对于类矩形光谱当不对称度小于10~(-2)时,视在增益误差引起的标度因数非线性误差会达到25′10~(-6)。因此在进行光源设计时需要将光谱不对称性作为一个定量考虑的指标。  相似文献   

8.
标度因数的温度特性和非线性是影响大动态光纤陀螺精度的重要因素,在航空、航天等对动态精度要求较高的应用场合需要对标度因数的温度特性和非线性误差进行补偿。通过对大动态光纤陀螺标度因数的误差分析,得出环境温度和输入角速率是影响标度因数误差的主要因素。建立了一种基于双线性插值的补偿模型,对大动态光纤陀螺的标度因数的温度特性和非线性进行综合补偿。在温度范围为-40℃~+60℃、角速率范围为0~7200(°)/s的条件下,标度因数误差由补偿前超过1.3′10~(-3)降低为小于5′10~(-6),标度因数精度提升了两个数量级,验证了补偿模型的有效性。补偿算法复杂度低,易于工程实现。  相似文献   

9.
在全温范围内应用的光纤陀螺,标度因数误差是其主要的误差之一。特别是在大角速率或者高精度应用时,光纤陀螺的标度因数误差甚至超过零偏漂移误差。在实际使用中,需对陀螺标度因数在全温范围内进行建模和补偿。对光纤陀螺标度因数误差机理进行详细分析后,提出了一种连续旋转的光纤陀螺全温标度因数快速建模补偿方法。基于单轴速率转台的连续旋转,可以自动快速完成标度因数全温建模且工程实现简单易行。更重要的是该方法可以有效识别标度因数在全温范围内的变化拐点,提高建模和补偿的精度。对比试验结果表明,采用此方法后能精确测得某型光纤陀螺全温工作的标度因数真实拐点为48℃,全温标度因数补偿精度优于15′10~(-6),较按照GJB2426-2004进行的多点测试后补偿提高10%左右。  相似文献   

10.
旋转调制光纤陀螺航海惯导系统中,光纤陀螺标度因数误差会与地球自转角速度耦合产生等效的天向和北向陀螺漂移误差,也会与船体摇摆角速度以及惯性测量单元旋转调制角速度耦合产生短时动态误差,限制了长航时航海惯性导航精度。通过使用两套三轴旋转调制光纤陀螺航海惯导系统进行联合旋转调制,提出一种光纤陀螺标度因数误差在线估计与自校正方法。根据两套三轴旋转调制光纤陀螺航海惯导系统的水平旋转轴空间夹角关系建立观测方程,实现在线估计滤波。半实物仿真结果表明,自主导航过程中光纤陀螺标度因数误差在线估计精度优于1 ppm,利用输出校正方式在线补偿光纤陀螺标度因数误差导致的惯导定位误差,有效抑制了两套三轴旋转调制光纤陀螺航海惯导系统定位误差的增长。实际转台模拟实验中,两套三轴旋转调制光纤陀螺惯导系统300 h纯惯性导航整体定位最大误差分别减小25%和40%。算法采用地心地固坐标系,因此也适用于极区导航情况。  相似文献   

11.
光纤陀螺标度因数分段标定的工程实现   总被引:1,自引:0,他引:1  
基于光纤陀螺标度因数存在非线性和不对称性,从工程实用角度出发,介绍了光纤陀螺速率标定方法,给出了光纤陀螺标度因数分段标定的工程实现方案,阐述了速率标定测试数据最优分段原则,找出了使分段标定后不连续光纤陀螺模型变成连续模型的解决措施.多个光纤陀螺速率标定的研究结果显示:分段标定能较大程度上减小光纤陀螺标度因数非线性度;利用实测数据进行离线导航计算的结果表明:对光纤陀螺标度因数分段标定能减小标度因数误差对导航精度的影响,文中分段标定方法切实可行.  相似文献   

12.
针对激光陀螺惯性测量组件在传统的分立式标定中受橡胶减震器影响的问题,从系统的角度对激光陀螺惯性测量组件的标度因数误差、安装误差传播规律进行分析。通过分别绕三只陀螺敏感轴转动激发激光陀螺的标度因数误差、安装误差,通过三只加速度计敏感轴分别指天激发加速度计的标度因数误差、安装误差和零位,从而完成激光陀螺惯性测量组件的系统级标定。在未进行温控及温补的情况下,陀螺仪标度因数误差重复性在3.5×10~(-6)以内,安装误差重复性在3″以内,加速度计标度因数误差和零位在其性能指标内,安装误差在4.5″以内。试验结果表明,该方法满足高精度、长期稳定性好的惯导系统工程应用要求。  相似文献   

13.
在设计闭环光纤陀螺的过程中发现,数模转换器D/A以及Y波导等器件的非线性容易导致陀螺出现死区及标度因数误差。为此,从理论上分析了光纤陀螺反馈回路的非线性误差对光纤陀螺性能的影响。通过分析可知,当Sagnac相移小于反馈回路积分非线性误差引起的相位差,并且反馈回路的差分非线性误差较大时,则容易引起阶梯波不能正常复位导致死区,也分析了反馈回路非线性误差对陀螺标度因数误差的影响,并进行了仿真及实验。为了防止反馈回路非线性误差引起的死区问题,提出了一种在反馈信号中叠加均值为零的方波信号方法,并通过后续信号处理中的平均过程消除了反馈回路非线性误差影响。  相似文献   

14.
针对激光器光谱线宽不可能严格为零的问题,在激光相干理论的基础上,采用光波场叠加的方法计算了布里渊光纤谐振腔的循环光强,详细分析了激光器光谱线宽对布里渊光纤谐振腔谐振谱线宽度和精细度的影响,并进一步分析了光谱线宽对谐振腔受激布里渊散射阈值的影响,最后,引入了线宽压缩的概念分析了布里渊光纤陀螺的灵敏度。分析表明,除了耦合器插入损耗外,激光器光谱线宽也是影响精细度的重要因素,具体影响程度与激光器光谱线宽及谐振腔本征谱线宽度间的相对大小有关,受激布里渊散射阈值随激光器线宽的增加而近似线性增加,另外在其他参数相同的情况下,布里渊光纤陀螺的灵敏度比谐振式光纤陀螺高大约三个数量级。本文为布里渊光纤陀螺的光源选择及光路参数的优化设计过程提供了理论依据。  相似文献   

15.
全角模式半球谐振陀螺具有测量动态范围大,不存在速率积分误差等优点,应用场景广泛,但驻波检测和驱动电路的增益非对称会对其标度因数的线性度和稳定性产生影响。针对上述问题,推导了含有检测驱动电路增益和相移的陀螺动力学模型,明确电路增益和相移不对称对陀螺标度因数的影响机理,提出一种检测驱动电路单路复用的方法,并通过仿真验证了所提方法的有效性。最后开展单路复用实验,实验结果表明单路复用将全角模式下的角速度漂移降低了82%,并将标度因数非线性从6%降低到了1.3%,基本消除了电路的增益非对称对标度因数的影响。  相似文献   

16.
针对激光陀螺具有标度因数稳定、漂移误差变化小的特点,建立了适合激光陀螺捷联惯导系统的陀螺及加速度计组件简化误差参数模型,推导出了适合激光陀螺捷联惯导系统外场快速自标定的误差模型,设计了激光陀螺捷联惯导系统9位置系统级标定方法,并通过试验验证了该方法可快速准确的标定出加速度计组件的标度因数、安装误差、零偏及激光陀螺安装误差等15个主要参数,方法简单易行。  相似文献   

17.
旋转载体驱动微机械陀螺是一种新型的振动式MEMS陀螺,它没有微机械陀螺通常所具有的驱动结构,而只有检测模态。它安装于旋转载体上,巧妙地利用了载体的自旋作为驱动,从而使得敏感质量获得角动量。当载体发生横向转动时,敏感质量将受到科里奥利力的作用。在进动力矩、弹性力矩和阻尼力矩的共同作用下,敏感质量将产生周期性振动。振动频率对应于载体自旋频率,振动幅度与载体输入角速度大小成比例。由此工作机理,得出了敏感元件的动力学方程,并基于动力学方程建立了陀螺标度因数的误差模型。接着,根据误差模型,对标度因数的稳定性进行了分析和实际测试。分析和实验数据说明,载体自旋频率的变化是造成标度因数不稳定的主要原因。为了保证陀螺测量精度,提出了一种抑制载体自旋频率变化对标度因数影响的补偿算法,提高标度因数稳定性。最后,针对该算法的有效性,进行了实验验证。实验结果表明,此种方法能有效地提高标度因数的稳定性,标度因数相对于自旋频率变化的影响因子由补偿前的1.31 m V/(°/s)/Hz下降至7.14×10-3 m V/(°/s)/Hz。  相似文献   

18.
双程前向结构掺铒光纤光源稳定性的实验研究   总被引:1,自引:0,他引:1  
为了获得高稳定的光纤陀螺掺铒光纤光源,理论分析了平均波长受温度变化的影响因素,实验研究了双程前向(DPF)结构掺铒光纤光源平均波长温度稳定性。主要通过优化铒纤长度来减小铒纤的本征温度系数对光源稳定性的影响,优化泵浦功率使其引起平均波长的变化达到最小。最终获得了掺铒光纤光源在双程前向结构下的优化铒纤长度12.2m和优化泵浦功率150mW,对比分析了包括优化铒纤长度在内的三个长度下,不同泵浦功率对光源的平均波长、输出功率和谱宽的影响;测量了不同长度铒纤的本征温度系数,获得了平均波长稳定性为-0.452ppm/°C的双程前向光纤光源。  相似文献   

19.
单轴旋转对惯导系统误差特性的影响   总被引:9,自引:0,他引:9  
分析了单轴旋转惯导系统自动补偿的基本原理,对陀螺和加速度计常值漂移、安装误差、标度因数误差等因素在单轴旋转下的调制情况进行了研究。通过仿真分析了转动速度对各种误差的影响规律,指出了实际系统旋转速度和方式的选择要综合考虑陀螺的常值漂移和标度因数误差的影响。利用激光捷联惯导系统在实验室中进行了单轴旋转IMU实验,其定位精度优于1nm/24h。研究结果可以为单轴旋转惯导系统的进一步优化和工程设计提供理论参考。  相似文献   

20.
激光陀螺捷联系统安装误差的标定   总被引:7,自引:2,他引:5  
本文从现有的实验条件,根据捷联导航系统的性能要求,提出利用具有角秒级位置精度的双轴转台,采用旋转实验法来标定激光陀螺的标度因数误差和安装误差。详细的阐述了旋转实验法的原理,并对实验精度进行了讨论,认为此方法可满足激光陀螺捷联系统的性能要求。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号