首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Effects of pH on mechanical properties as well as morphological studies of sol–gel derived in situ silica in polyvinyl chloride-50% epoxidized natural rubber (PVC-ENR50) nanocomposites are reported. In particular, a range of acid concentrations was investigated. These nanocomposites were prepared by solution casting technique and tetraethoxysilane (TEOS) was used as the silica precursor. The prepared nanocomposites were characterized using tensile test, scanning electron microscopy (SEM) and transmission electron microscopy (TEM). The tensile test indicated that the highest mechanical strength was at 30% TEOS added for the nanocomposite prepared at pH 2.0. At pH 1.0 and 1.5 the maximum tensile strength reading was at 20% TEOS added with value of 24.3 and 24.5 MPa, respectively. SEM and TEM revealed the dispersion of silica particles in the polymer matrix. For nanocomposites prepared at pH 1.0 and 1.5, the silica particles were finely dispersed with the average size of 60 nm until 20% TEOS added. Meanwhile for nanocomposite prepared at pH 2.0, silica particles were homogenously distributed in the polymer matrix with average diameter of 30 nm until 30% TEOS and agglomerated after 30% TEOS loading.  相似文献   

2.
《中国化学快报》2023,34(4):107499
The morphology regulation of hollow silica microspheres is significant for their properties and applications. In this paper, hollow silica microspheres were formed through the hydrolysis and condensation reaction of tetraethyl orthosilicate (TEOS) at the interface of the emulsion droplet templates composed of liquid paraffin and TEOS, followed by dissolving paraffin with ethanol. The effects of various factors including the emulsifier structure and content, TEOS content, catalyst type, and the ethanol content in the continuous water phase on the particle size, shell thickness and morphology of the prepared hollow silica microspheres were studied in detail. The results show that the diffusion and contact of TEOS and water molecules as well as the hydrolysis condensation reaction of TEOS at the oil-water interface are two critical processes for the synthesis and morphological regulation of hollow silica microspheres. Cationic emulsifier with a hydrophobic chain of appropriate length is the prerequisite for the successful synthesis of hollow silica microspheres. The ethanol content in water phase is the dominant factor to determine the average diameter of hollow microspheres, which can vary from 96 nm to 660 nm with the increase of the volume ratio of alcohol-water from 0 to 0.7. The silica wall thickness varies with the content and the hydrophobic chain length of the emulsifier, TEOS content, and the activity of the catalyst. The component of the soft template will affect the morphology of the silica wall. When the liquid paraffin is replaced by cyclohexane, hollow microspheres with fibrous mesoporous silica wall are fabricated. This work not only enriches the basic theory of interfacial polymerization in the emulsion system, but also provides ideas and methods for expanding the morphology and application of hollow silica microspheres.  相似文献   

3.
Size tunable and structure tailored core-shell-shell nanospheres containing silica cores, gold nanoparticle shells, and controlled thicknesses of smooth, corrugated, or porous silica shells over the gold nanoparticles have been synthesized. The synthesis involved the deposition of gold nanoparticles on silica cores, followed by sol-gel processing of tetraethoxysilane (TEOS) or sodium silicate to form dense or porous silica shells, respectively, over the gold nanoparticles. The structures and sizes of the resulting core-shell-shell nanospheres were found to heavily depend on the sizes of the core nanoparticles, the relative population of the gold nanoparticles on each core, and the concentration of TEOS. While a higher TEOS concentration resulted in thicker and more uniform silica shells around individual larger silica cores (approximately > or =250 nm in diameter), the same TEOS concentration resulted in aggregated and twin core-shell-shell nanostructures for smaller silica cores (approximately < or =110 nm in diameter). The thinner silica shells were synthesized by using a lower TEOS concentration. By using sodium silicate (Ung et al. J. Phys. Chem. B 1999, 103, 6770), the porous silica shells were synthesized. Controlled chemical etching of the core-shell-shell nanoparticles with an aqueous KCN solution resulted in corrugated silica shells around the gold nanoparticles or corrugated silica nanospheres with few or no gold nanoparticles. This has allowed synthesis of new types of core-shell-shell nanoparticles with tailored corrugated shells. The nanoporous silica shells provided accessible structures to the embedded metal nanoparticles as observed from the electrochemical response of the gold nanoparticles.  相似文献   

4.
由硅酸酯合成单分散二氧化硅中碳的化学形态   总被引:1,自引:0,他引:1  
单分散二氧化硅是指尺寸分布十分狭窄的二氧化硅颗粒.单分散颗粒在科学研究及工业应用中得到了广泛的应用[1].单分散二氧化硅由正硅酸有机酯在氨催化下于醇溶液中水解缩合得到.硅酸酯的水解和缩合反应可用如下反应描述.总的反应式为:nSi(OR)4+2nH20→nSiO2+4nROH1956年Kolbe[2]发现正硅酸乙酯(TEOS)在碱催化下于乙醇溶剂中水解反应有时会形成均一颗粒二氧化硅以来,许多学者对这一反应体系进行了较为广泛的研究,提出了双分子缩合成核机理、单分子叠加生长机理、表面反应控制生长机理、扩散控制生长机理和微晶核团聚生…  相似文献   

5.
用改进的种子法合成SiO2微球. 微球生长过程中连续缓慢添加正硅酸乙酯,使用动态光散射法实时监控微球粒径的增长过程,调节正硅酸乙酯的添加,实现对粒径的精确控制. 为制备禁带位置位于1000 nm 的光子晶体,合成粒径为446 nm的SiO2微球,微球粒径在4 h内从193 nm 增长到446 nm,远远快于传统种子法,微球粒径与目标粒径偏差为±5 nm. 制得的SiO2微球被组装为光子晶体,其禁带位置恰好位于1000 nm.  相似文献   

6.
This paper presented a novel approach to prepare PP/silica nanocomposites. First, PPw-g-KH570 (γ-methacryloxypropyl trimethoxysilane) was obtained by pre-irradiation grafting method and characterized by FTIR and TGA. Then the non-aqueous sol–gel gelation kinetics of TEOS (tetraethoxysilane)-formic acid system in xylene was researched. Subsequently PPw/silica hybrid was obtained by in situ non-aqueous sol–gel reaction of TEOS in the presence of PPw-g-KH570 solution in xylene. Finally PP/silica nanocomposites were prepared by blending of PP matrix and PPw/silica hybrid. The mechanism of in situ formed PPw/silica hybrid was proposed. The morphology of PPw/silica hybrid and microstructures of PP/silica nanocomposites were characterized by TEM and SEM. The mechanical and thermal properties of PP/silica nanocomposites were also well studied by tensile tests and DSC. It was showed that the nanosilica particles were well dispersed in PPw/silica hybrid with the aid of grafting KH570 due to co-condensation by grafted KH570 and TEOS. PPw/silica hybrid was well dispersed in PP matrix with good compatibility and strong interactions. The resulted PP/silica nanocomposites possessed better performance than that of pure PP matrix.  相似文献   

7.
生物矿化合成纳米针状SiO2   总被引:16,自引:0,他引:16  
利用少量有机大分子可控制大分子成核、生长,最后形成生物矿化纳米结构材料[1].这些合成的纳米结构材料有许多重要的性质,如流动性和运输行为、催化活性、分离效率、粘附特性、储存特性和从"智能"胶体中释放的动力学特性等[2].  相似文献   

8.
A mechanochemical intercalation approach which applies a simple mechanical milling to induce intercalation reaction was applied to introduce controlled amount of tetraethoxylsilane (TEOS) into surfactant-preexpanded graphite oxide, and the relationships between the intercalation structure, the porosities of the calcined products, and the Si addition were examined. It was found that a small added amount of TEOS produced a more expanded ordered layer structure with the interlayer distance and silicon content increasing with the amount of TEOS added, although a large amount of added TEOS easily induces layer delamination, resulting in a less ordered structure. The silica structure in the composite is changed from a disordered structure having enhanced bond strain to a condensed silica network when the amount of TEOS added increases. The porosities of the final calcined samples increase with the increase of silicon content but then decrease slightly after reaching a maximum where silicon content starts to become constant, indicating that both silicon content and the composition state of silica particles and carbon layers play important roles in porosity formation.  相似文献   

9.
Polypropylene/silica microcomposites with high aspect ratio silica fillers were in situ generated into a molten polypropylene (PP) matrix. The synthesis of the inorganic domains are based on hydrolysis-condensation reactions of both alkoxysilanes precursors, the tetraethoxysilane (TEOS) and the Dynasil? 40 (composed of TEOS and partially condensed TEOS with residual ethoxy groups) respectively. The sol?Cgel reactions kinetics studied at room temperature into an acid hydroalcoholic medium for several conditions of pH associated to the processing conditions were the keys factors to control the deformability of the inorganic droplets. Thanks to a shearing hot stage coupled with an optical microscope, silica needles were obtained with a Dynasil? 40 solution treated 120?min at pH?=?3 in presence of 4?g of ethanol and then placed between two slices of PP in the stage. The deformation of the droplets were then observed once the material was molten and a shearing applied. On the contrary, no deformation was possible with TEOS precursors solutions. The results transposed to the microextruder process equipped at the die with a drawing line allowed to obtain a well pronounced elongated shape of the silica particles dispersed in the polypropylene matrix.  相似文献   

10.
This paper presented a novel preparation method of silica coated organic pigment. In this approach, the surfaces of the organic pigment were first orderly modified by poly(sodium 4-styrenesulfonate) (PSS) and poly(diallyldimethylammonium chloride) (PDADMAC), then coated by silica via sol-gel process of tetraethylorthosilicate (TEOS). The results showed that PVP, pH value, water and TEOS contents had significant influence on the morphology of the silica encapsulated organic pigment. Organic pigments coated silica by this approach could scatter UV ray with wavelength less than 270 nm, and this scattering property increased with more silica coated.  相似文献   

11.
A silica monomer-estrone complex (EstSi) having a thermally cleavable urethane bond and a cross-linkable triethoxysilane group was synthesized. From EstSi and TEOS, spherical silica particles with sizes of 1.5-3 mum were prepared. The template molecules were removed from the silica matrix by heating at 180 degrees C in DMSO in the presence of water, generating a cavity with an amino group. The control silica particles that had the same sizes and shapes were obtained with aminopropyl triethoxysilane and TEOS. When ethylene glycol was added in place of H2O, an ethyl alcoholic group was formed in the cavity. Their recognition ability and specific binding for estrone were characterized by uptake experiments. The estrone-imprinted silica particles showed a much higher recognition ability than the control silica particles and higher selectivity for estrone than testosterone propionate.  相似文献   

12.
Mesoporous silica capsules with submicrometer sizes were successfully prepared via the interfacial hydrolysis and condensation reactions of tetraethoxysilane (TEOS) in inverse miniemulsion by using hydrophilic liquid droplets as template. The inverse miniemulsions containing pH-controlled hydrophilic droplets were first prepared via sonication by using poly(ethylene-co-butylene)-b-poly(ethylene oxide) (P(E/B)-PEO) or SPAN 80 as surfactant. TEOS was directly introduced to the continuous phase of an inverse miniemulsion. The silica shell was formed by the deposition of silica on the surface of droplets. The formation of capsule morphology was confirmed by transmission electron microscopy (TEM) and field emission scanning electron microscopy (FESEM). The mesoporous structure was verified by nitrogen sorption measurements. The specific surface area could be tuned by the variation of the amount of cetyltrimethylammonium bromide (CTAB) and TEOS, and the pore size by the amount of CTAB. The influences of synthetic parameters on the particle size and morphology were investigated in terms of the amount of CTAB, pH value in the droplets, TEOS amount, surfactant amount, and type of solvent with low polarity. A formation mechanism of silica capsules was proposed.  相似文献   

13.
聚丙烯酸控制合成的聚合物/二氧化硅复合纳米球   总被引:1,自引:0,他引:1  
以3-氨丙基三甲氧基硅烷(APMS)和正硅酸乙酯(TEOS)为硅源, 与阴离子聚合物聚丙烯酸(PAA)链之间通过S-N+-I-机理组装合成了聚丙烯酸-二氧化硅(PAA/SiO2)复合纳米球. SEM, TEM, TG和FTIR表征结果表明, 合成的纳米球是聚丙烯酸和二氧化硅复合物, 平均直径约为80 nm. 在合成PAA/SiO2复合纳米球的体系中, 加入不同量的有机溶剂THF能够调控复合球的尺度.  相似文献   

14.
Hybrid silica gels (HSGs) were prepared according to an acid-catalyzed sol–gel method using tetraethoxysilane (TEOS) as silica precursors and colloidal suspension of nontronite clay mineral. The silica surfaces were hydrophilic in relation to silanol groups and it was of interest to increase hydrophobicity by substituting silanol by methylated groups through addition of methyltrimethoxysilane (MTMS) in a molar ratio TEOS: MTMS equaled to 1:0.4. The aim of the present paper was to predict effects of water content in soil on HSG hydration by characterizing HSG water desorption and sorption with dynamic vapor sorption device. From desorption kinetics, TEOS HSGs showed higher ability to water surface evaporation and diffusion compared to the TEOS–MTMS HSGs. After complete dehydration, water sorption isotherms Type II were obtained for HSGs. Isotherms were fitted with Brunauer-Emmett-Tellet (BET) and Guggenheim, Andersen, de Boer (GAB) models. The higher monolayer values of water adsorbed for HSGs containing nontronite suggested a major influence of clay minerals on overall hydration. However, the water binding energy depended upon the nature of silica matrix indicating weaker bonds with methylated groups at solid surface in MTMS–TEOS HSGs. Apparent water sorption diffusivities, Dapp were calculated according to Fick’s diffusion model. Maximal Dapp values were obtained in the range 0.2??.3 aw after which the Dapp decreased in relation with capillary condensation.  相似文献   

15.
The influence of key sol-gel synthesis parameters on the pore structure of microporous silica xerogels was investigated. The silica xerogels were prepared using an acid-catalyzed aqueous sol-gel process, with tetraethoxysilane (TEOS) as the silicon-containing precursor. At high H2O : TEOS ratios, sols synthesized at pH 2–3 yielded minimum values of mean micropore diameter and micropore volume. Analysis of the resulting Type I nitrogen adsorption isotherms and the equilibrium adsorption of N(C4F9)3 indicated micropore diameters for these xerogels of less than approximately 10 Å.Xerogel micropore volumes corresponding to sols prepared at pH 3 and an H2O : TEOS ratio of r = 83 were consistent with nearly close packing of silica spheres in the xerogel. Xerogel microstructure was only weakly dependent upon H2O : TEOS ratio during sol synthesis for r > 10. Xerogel micropore volume increased rapidly with sol aging time during an initial induction period of particle formation. However, the xerogel microstructure changed only slowly with time after this initial period, suggesting potential processing advantages for the particulate sol-gel route to porous silica materials.Surface adsorption properties of the silica xerogels were investigated at ambient temperature using N2, SF6, and CO2. CO2 adsorbed most strongly, SF6 also showed measurable adsorption, and N2 adsorption was nearly zero. These results were consistent with the surface transport of CO2, and to a lesser extent SF6, observed in gas permeation studies performed through thin membrane films cast from similarly prepared silica sols.  相似文献   

16.
通过三种硅源, 正硅酸已脂(TEOS)、胶体二氧化硅、气相法白炭黑, 成功地合成出ITQ-13分子筛, 并用X射线衍射(XRD)、扫描电子显微镜(SEM)、BET表面积测试和氘代乙腈吸附等方法对合成的材料进行表征. 结果表明, 用硅胶和白炭黑为硅源合成出的ITQ-13具有较好的晶化度和较大的晶体尺寸.  相似文献   

17.
DL-tartaric acid was used as a template for the formation of silica nanotubes and spheres by the sol-gel method from tetraethylorthosilicate (TEOS) as silica source. The reactions were carried out in ethanol/water mixtures in the presence of aqueous ammonia, between 0°C and 75°C, using both stirred and non-stirred conditions. TEM and SEM images show that the yield and microstructure of the silica is influenced by the synthetic conditions (temperature, ammonia (aq) concentration, gelation time, solvent mixture). It was observed that the chiral form of the tartaric acid used and the diffusion of TEOS to the template determines the eventual silica structure.  相似文献   

18.
在水醇体系中,以正硅酸四乙酯(TEOS)作为硅源、氨水作为催化剂,快速合成了哑铃状、纤维状及链状3种形貌的纳米SiO2;利用透射电子显微镜分析了产物的微观结构,着重探讨了氨水浓度、TEOS浓度及TEOS滴加速度对纳米SiO2形貌的影响,并提出了不同形貌纳米SiO2的形成机理.  相似文献   

19.
We have investigated the effect of solvent in the sol–gel process of tetraethylorthosilicate (TEOS) when di-n-butyltin dilaurate (DBTL) is used as polycondensation catalyst. Two sets of materials similar to those employed in the field of stone consolidation were prepared in the laboratory by using either protic or aprotic solvents: (1) xerogels from TEOS/DBTL, and (2) composites from TEOS/colloidal silica particles/DBTL. The results have shown that the solvent directly influences the aggregation pathway of the condensates. For a mixture of methyl ethyl ketone/acetone (aprotic solvents), gels with a higher degree of condensation were obtained. In the case of TEOS xerogels, the materials are essentially non-porous. Additionally, the incorporation of colloidal silica particles induces an important increase in porosity, which is even more dramatic when ethanol is used as solvent, through the formation of micro and mesoporous materials as the concentration of particles is increased. A TEOS polymerization pathway is suggested depending on which system of solvents is used. Various analytical techniques were used to characterize the materials obtained.  相似文献   

20.
Hollow silica spheres have been successfully fabricated by means of a miniemulsion technique, in which miniemulsion droplets of tetraethoxysilane (TEOS) and octane were prepared with cetyltrimethylammonium bromide as a surfactant and hexadecane as a costabilizer and used as templates. As the TEOS diffused out from the droplets, it was hydrolyzed and condensed to form a silica shell at the oil/water interface. In this way, hollow silica spheres could be obtained directly since the miniemulsion droplets of octane could be evaporated very easily during the reaction process or the drying process; neither an additional dissolution nor a calcination process or additional surface modification of the templates were needed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号