首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 296 毫秒
1.
永贵  黄海军  许岩 《物理学报》2013,62(1):10506-010506
利用改进的层次域元胞自动机模型,研究了正菱形网格空间中的行人疏散问题.这类网格可以避免行人贴近房间墙壁或障碍物,转移概率考虑了各种逃生受阻因素.数值仿真显示,出口处的行人分布与实验快照展示的行人分布基本相同,疏散时间和出口宽度呈线性关系,行人流率接近实验结果.  相似文献   

2.
陈亮  郭仁拥  塔娜 《物理学报》2013,62(5):50506-050506
为研究行人疏散过程中的路径选择行为, 提出了一个基于元胞自动机的行人微观模型, 并组织了三组双出口教室内的学生疏散实验. 模型中, 行人路径选择行为受其到出口距离、前方路径通行能力和行人间排斥力影响. 通过观察实验结果, 得到一些相关现象. 利用实验结果对模型参数进行校正. 利用校正模型对该教室内疏散学生流进行仿真, 结果表明 模型能有效地刻画教室内学生流的疏散特征, 疏散时间随学生人数线性增加. 该研究有助于类似场景中行人疏散策略和方案的制定. 关键词: 元胞自动机 行人疏散 仿真 实验  相似文献   

3.
禹尔东  吴正  郭明旻 《物理学报》2014,63(9):94501-094501
本文设计了一个双出口房间内人群疏散的实验方案,通过不同条件下疏散过程的实况录像及视频检测,得到不同人数疏散时间的许多定量结果.提出了双出口房间吸引区间的概念,证明了较小出口吸引区间的边界总是一段圆弧,可以解释行人流出口处的圆形成拱现象.通过类比地铁候车厅内人群疏散过程,建立了双出口房间内疏散时间的二次函数模型,成功拟合不同条件下的实测数据.疏散人数较少时,疏散时间随着人数增加而线性增长;人数较多,在出口附近出现待行区域时,疏散时间则呈二次函数增长.与一些已知疏散时间数学模型相比,本文模型对出口宽度变化的反应更敏感.  相似文献   

4.
An extended floor field model was proposed to investigate evacuation behaviors of pedestrians under the threat of artificial attack. In this model, pedestrian movement governed by the static and dynamic floor field, and the motion and assault of artificial attacker were involved simultaneously. Further, injuries with lower velocity and deaths of pedestrians caused by the attacker during evacuation were considered. And a new parameter kt was introduced. It is the sensitivity coefficient of attack threat floor field and could reflect quantitatively the extent of effect of attack threat on the decision-making of the individual. Moreover, effects of several key parameters such as the sensitivity coefficient, assault intensity and pedestrian density on evacuation dynamics were studied. Results show that pedestrian evacuation would display interesting phenomena transiting from rolling behavior to along-the-wall motion with aggravating extent of the impact of attackers on pedestrians, which refers kt in the model varying from 0.5 to 0.8. As assault intensity increases, more casualties would be caused and the available evacuation time would decrease, which means people have to flee the room in a shorter time period for survival. When the pedestrian density increases, more clogging at the exit would be generated and pedestrians would be more difficult to evacuate due to the limited capacity of egress and the reduction in the average speed of pedestrian flow caused by the injured. And the injured with limited motion capacity could hardly complete the evacuation owing to that they need more evacuation time and would retard the speed of the pedestrian flow.  相似文献   

5.
X. Xu  H.Y. Zheng 《Physica A》2008,387(22):5567-5574
In the traditional egress model based on cellular automata, building spaces are divided into discrete grids, the size of which is usually as large as that of a pedestrian. In order to explore the influences of the grid size on the evacuation results, we studied the evacuation process using a multi-grid egress model. In the multi-grid model, a finer grid is used and each pedestrian occupies n×n basic grids. It is found that if the pedestrian always moves one grid at each time step, the evacuation time increases with the decrease of the grid size, and reaches a stable, grid-independent value when the grid size is small enough. Another factor which influences the evacuation results is the length of the time step. It is found that with the increasing length of the time step, the evacuation time has a tendency to increase but endures complex changes. The differences between the single-grid model and multi-grid model may be due to two main reasons. First, in the multi-grid model, the pedestrians are out of alignment so that there are patches of unusable empty spaces as they are smaller in size than a pedestrian. Second, in the multi-grid model, pedestrians tend to reach the exit at the same time, leading to more serious conflicts among pedestrians.  相似文献   

6.
Based on the cellular automata method (CA model) and the mobile lattice gas model (MLG model), we have developed a heterogeneous lattice gas model for simulating pedestrian evacuation processes in an emergency. A local population density concept is introduced first. The update rule in the new model depends on the local population density and the exit crowded degree factor. The drift D, which is one of the key parameters influencing the evacuation process, is allowed to change according to the local population density of the pedestrians. Interactions including attraction, repulsion, and friction between every two pedestrians and those between a pedestrian and the building wall are described by a nonlinear function of the corresponding distance, and the repulsion forces increase sharply as the distances get small. A critical force of injury is introduced into the model, and its effects on the evacuation process are investigated. The model proposed has heterogeneous features as compared to the MLG model or the basic CA model. Numerical examples show that the model proposed can capture the basic features of pedestrian evacuation, such as clogging and arching phenomena.  相似文献   

7.
朱诺  贾斌  邵春福  岳昊 《中国物理 B》2012,21(5):50501-050501
An improved dynamic parameter model is presented based on cellular automata. The dynamic parameters, including direction parameter, empty parameter, and cognition parameter, are formulated to simplify tactically the process of making decisions for pedestrians. The improved model reflects the judgement of pedestrians on surrounding conditions and the action of choosing or decision. According to the two-dimensional cellular automaton Moore neighborhood we establish the pedestrian moving rule, and carry out corresponding simulations of pedestrian evacuation. The improved model considers the impact of pedestrian density near exits on the evacuation process. Simulated and experimental results demonstrate that the improvement makes sense due to the fact that except for the spatial distance to exits, people also choose an exit according to the pedestrian density around exits. The impact factors α, β, and γ are introduced to describe transition payoff, and their optimal values are determined through simulation. Moreover, the effects of pedestrian distribution, pedestrian density, and the width of exits on the evacuation time are discussed. The optimal exit layout, i.e., the optimal position and width, is offered. The comparison between the simulated results obtained with the improved model and that from a previous model and experiments indicates that the improved model can reproduce experimental results well. Thus, it has great significance for further study, and important instructional meaning for pedestrian evacuation so as to reduce the number of casualties.  相似文献   

8.
Guan-Ning Wang 《中国物理 B》2022,31(6):60402-060402
The study of the panic evacuation process is of great significance to emergency management. Panic not only causes negative emotions such as irritability and anxiety, but also affects the pedestrians decision-making process, thereby inducing the abnormal crowd behavior. Prompted by the epidemiological SIR model, an extended floor field cellular automaton model was proposed to investigate the pedestrian dynamics under the threat of hazard resulting from the panic contagion. In the model, the conception of panic transmission status (PTS) was put forward to describe pedestrians' behavior who could transmit panic emotions to others. The model also indicated the pedestrian movement was governed by the static and hazard threat floor field. Then rules that panic could influence decision-making process were set up based on the floor field theory. The simulation results show that the stronger the pedestrian panic, the more sensitive pedestrians are to hazards, and the less able to rationally find safe exits. However, when the crowd density is high, the panic contagion has a less impact on the evacuation process of pedestrians. It is also found that when the hazard position is closer to the exit, the panic will propagate for a longer time and have a greater impact on the evacuation. The results also suggest that as the extent of pedestrian's familiarity with the environment increases, pedestrians spend less time to escape from the room and are less sensitive to the hazard. In addition, it is essential to point out that, compared with the impact of panic contagion, the pedestrian's familiarity with environment has a more significant influence on the evacuation.  相似文献   

9.
A force-driving cellular automata model considering the social force on cell movement, such as the desirous willing of a pedestrian to exit, the repulsive interaction among pedestrians or between pedestrians and obstacles, was set up to investigate the evacuation behaviors of pedestrians at a T-shaped intersection. And an analogical formulation, taking reference of the magnetic force, was introduced to describe the above repulsive actions. Based on the model, the evacuation behaviors of pedestrians were simulated in terms of different pedestrian density, distribution and corridor width, and then evacuation time was obtained and analyzed. Furthermore, an experiment was conducted to verify the results of the presented model. The results demonstrate that when the density of pedestrians is greater than a certain threshold, pedestrians of a certain direction would be jammed by the repulsion from pedestrians of the counter flow from another direction, and the evacuation time of the former would be longer, even though they are closer to the exit, which would possibly result in a serious casualty in an emergency circumstance. And the phenomenon has been validated by the experiments well. In addition, a corresponding critical corridor width related to different DOPs, beyond which the evacuation time could be decreased rapidly due to a strong degradation of jamming behaviors near the T-shaped intersection, was also discovered and predicted by the proposed model.  相似文献   

10.
A bidimensional cellular automaton model is used to simulate the process of evacuation of pedestrians in a room with fixed obstacles. A floor field is defined so that moving to a cell with lower floor field means approaching an exit door. The model becomes non-deterministic by introducing a “panic” parameter, given by a probability of not moving, and by a random choice to resolve conflicts in the update of pedestrian positions. Two types of exit doors are considered: single (where only one person can pass) and double (two persons can pass simultaneously). For a double door, the longest evacuation time turns out to occur for a very traditional location of the door. The optimum door position is determined. Replacing the double door by two single doors does not improve evacuation times noticeably. On the other hand, for a room without obstacles, a simple scaling law is proposed to model the dependence of evacuation time with the number of persons and exit width. This model fails when obstacles are present, as their presence introduces local bottlenecks whose effect outweighs the benefits of increasing door width beyond a certain threshold.  相似文献   

11.
基于元胞自动机的行人疏散流仿真研究   总被引:2,自引:0,他引:2       下载免费PDF全文
岳昊  邵春福  姚智胜 《物理学报》2009,58(7):4523-4530
基于元胞自动机对行人疏散流进行仿真研究.模型利用两个动态参数反映行人移动区域内的疏散情况,从而决定行人的行为选择.模型中行人可以根据自身周围的情况选择移动、等待行为.本文仿真研究了行人在正常疏散环境下,系统规模、疏散人数、安全出口宽度、多个安全出口布局对行人疏散时间的影响.研究结果表明,行人疏散时间随行人数量呈线性增加;随安全出口宽度呈负指数性减少;同时,多个安全出口布局的不平衡也会对行人的疏散过程和疏散时间产生一定的影响. 关键词: 元胞自动机 行人疏散流 动态参数 疏散时间  相似文献   

12.
Yang-Hui Hu 《中国物理 B》2023,32(1):18901-018901
Building exit as a bottleneck structure is the last and the most congested stage in building evacuation. It is well known that obstacles at the exit affect the evacuation process, but few researchers pay attention to the effect of stationary pedestrians (the elderly with slow speed, the injured, and the static evacuation guide) as obstacles at the exit on the evacuation process. This paper explores the influence of the presence of a stationary pedestrian as an obstacle at the exit on the evacuation from experiments and simulations. We use a software, Pathfinder, based on the agent-based model to study the effect of ratios of exit width ($D$) to distance ($d$) between the static pedestrian and the exit, the asymmetric structure by shifting the static pedestrian upward, and types of obstacles on evacuation. Results show that the evacuation time of scenes with a static pedestrian is longer than that of scenes with an obstacle due to the unexpected hindering effect of the static pedestrian. Different ratios of $D/d$ have different effects on evacuation efficiency. Among the five $D/d$ ratios in this paper, the evacuation efficiency is the largest when $d$ is equal to $0.75D$, and the existence of the static pedestrian has a positive impact on evacuation in this condition. The influence of the asymmetric structure of the static pedestrian on evacuation efficiency is affected by $D/d$. This study can provide a theoretical basis for crowd management and evacuation plan near the exit of complex buildings and facilities.  相似文献   

13.
谢积鉴  薛郁 《物理学报》2012,61(19):194502-194502
在室内行人疏散过程中,行人博弈对疏散效率有着重要的影响.本文把抵制博弈策略更新的强度定义为抵制强度. 为了研究抵制强度对疏散效率的影响, 通过在行人博弈策略更新的概率中引入抵制强度,基于元胞自动机模型数值计算在不同的行人密度, 出口宽度下疏散总时间随抵制强度变化的关系.结果表明: 室内行人疏散过程中, 抵制强度小会使得争抢行为极其容易蔓延. 当行人密度小且出口宽大时, 输入以急速疏散为主的规范信息,鼓励行人模仿优胜者更新博弈策略, 当行人密度大且出口狭小时, 输入以避让为主的规范信息抑制行人争抢,都能提高疏散效率. 最后找出不同条件下与最短疏散总时间相对应的优化抵制强度, 为提高室内行人疏散效率提供一个新的视角.  相似文献   

14.
郭宁  姜锐  胡茂彬  丁建勋 《中国物理 B》2017,26(12):120506-120506
In this paper, the evacuation dynamics in an artificial room with only one exit is investigated via experiments and modeling. Two sets of experiments are implemented, in which pedestrians are asked to escape individually. It is found that the average evacuation time gap is essentially constant. To model the evacuation dynamics, an improved social force model is proposed, in which it is assumed that the driving force of a pedestrian cannot be performed when the resultant physical force exceeds a threshold. Simulation results are in good agreement with the experimental ones.  相似文献   

15.
金辉  郭仁拥 《物理学报》2019,68(2):20501-020501
针对楼梯区域行人运动进行观测实验,获得行人上下楼过程中的运动数据,通过对数据进行整理与分析,绘制不同过程中流量-密度变化关系图.通过对流密关系图进行定量分析,掌握楼梯区域行人运动特征,并改进原有元胞传输模型,提出楼梯行人运动模型,仿真模拟行人运动过程.模型中,引入势能修正系数,利用异向行人对元胞势能的影响来改变行人的路径选择;引入流量修正系数,描述不同的物理参数对元胞边界最大流量的影响;引入偏移系数,修正移动规则,增强优先方向对行人路径选择行为的影响.然后,通过比较仿真结果与实验数据,对模型及引入参数进行验证和校准.最后,利用校正模型,模拟研究楼梯区域对向行人运动过程,并对势能修正参数进行了灵敏度分析,进一步研究模型参数对行人运动的影响.研究表明,该模型可以模拟刻画楼梯区域行人运动过程,同时验证了楼梯区域行人集散效率跟行人到达率与行人路径选择有关.  相似文献   

16.
Yan Xu  Hai-Jun Huang 《Physica A》2012,391(4):991-1000
A modified floor field model is proposed to simulate the pedestrian evacuation behavior in a room with multiple exits by considering the direction visual field. Direction visual field is used to describe the pedestrian’s prediction on the propagation of pedestrian flow along some directions. The proposed model outperforms most of the similar models developed so far in such scenario that pedestrians are initially distributed in a room’s specified zone. Simulation results show that the consideration of direction visual field can better reproduce the evacuation process and reduce evacuation time apparently. Sensitivity analyses of the model parameters are presented.  相似文献   

17.
初始位置布局不平衡的疏散行人流仿真研究   总被引:2,自引:0,他引:2       下载免费PDF全文
岳昊  张旭  陈刚  邵春福 《物理学报》2012,61(13):130509-130509
行人初始位置布局不平衡的多安全出口疏散过程, 是行人疏散流仿真研究的热点. 利用行人流动态参数仿真模型, 在实际距离和假想距离"极大极小"路径选择机理的基础上, 改进假想距离的计算方法及其拥堵计算区域, 实现疏散过程的动态平衡; 提出行人位置布局的不平衡系数, 以描述疏散空间内行人初始位置布局的不平衡性. 从行人初始位置随机和固定布局的角度, 仿真研究正常疏散环境下行人布局的不平衡性对疏散时间的影响, 并将仿真结果与原始模型做对比分析. 研究表明, 模型能有效地实现行人流疏散过程的动态平衡, 行人疏散时间受行人位置或安全出口布局的影响较小, 而与安全出口总宽度、 行人的初始数量以及拥堵感知系数有关.  相似文献   

18.
《Physica A》2006,363(2):492-500
Introducing the force concept of a social force model into the lattice gas (LG) model, a new LG-based discrete model entitled “multi-grid model” is composed. In the new model, finer lattice is used; thus each pedestrian occupies multiple grids instead of one, and the rules of interactions among pedestrians or pedestrians and constructions are built. The interaction forces including extrusion, repulsion and friction are considered as passive factors for evacuation. The strength of the drift, or the intensity of the pedestrians to move toward the exit rapidly, is considered an active factor. A simple situation is studied in which pedestrians try to evacuate from a large room with only one door. The influences of interaction forces and drift on evacuation time are analyzed. The mutual restriction relation of the two factors in the course of evacuating is found.  相似文献   

19.
In this brief letter, we modify the classic social force model of Helbing which is applied to simulate how a pedestrian gets outside a hall full of smoke. As the Vicsek model does, the view radius is introduced to describe the range the pedestrian can see. The relation between the evacuation time and the view radius is studied with different numbers of pedestrians. The results show that the shorter the view radius is, the more time walkers will spend escaping, and even fail to escape. And the relation between the number of remaining walkers and the view radius shows non-monotonicity, if the number of pedestrians is larger than 600. And lastly, we propose to enlarge the width of the exit or to add two small exits in the corners, which may decrease the evacuation time greatly and obviously reduce the number of remaining walkers.  相似文献   

20.
侯磊  刘建国  潘雪  郭强  汪秉宏 《物理学报》2014,63(17):178902-178902
2013年6月3日,吉林禽业公司发生大火,300多名员工中120人遇难,是我国2000年以来死亡人数最多的一次火灾.此次火灾造成巨大伤亡的一个重要原因是厂房的6个出口只有3个可用,并且员工不知道每个出口的可用性信息.本文运用经典的地面场模型对吉林禽业火灾逃生过程进行模拟,研究了厂房各出口的重要性差异以及出口的可用性对逃生效果的影响.结果表明,如果多开一个出口,最多可挽救54.3%的遇难者,如果6个出口全部可用,76.6%的遇难者能够逃离.另外,在出口可用性信息完全掌握的情况下,遇难人数也会减少21.6%.由此可见,保证人群集聚现场出口的可用性以及信息的及时流通对于保护人民的生命财产安全至关重要.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号