首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
截断展开方法和广义变系数KdV方程新的精确类孤子解   总被引:70,自引:8,他引:62       下载免费PDF全文
张解放  陈芳跃 《物理学报》2001,50(9):1648-1650
利用特殊的截断展开方法求出了广义变系数KdV方程新的类孤子解.这种方法的基本思想是假定形式解具有截断展开形式,以致可把广义变系数KdV方程转化为一组待定函数的代数方程组,进而给出待定函数容易积分的常微分方程.利用例子证明了这种方法是十分有效的. 关键词: 截断展开法 变系数 KdV方程 孤波解  相似文献   

2.
The analytical formulation of the dynamical J-T problem leads to a system of two ordinary linear first order differential equations, whose solutions are required to belong to the space of entire functions. This condition determines the energy eigenvalues. It can be formulated in terms of a convergent continued fraction which defines a transcendental equation between the interaction constant and the energy (with the angular momentum quantum number as parameter). For an estimate the continued fraction is approximated with high accuracy by a periodic continued fraction in which the first m partial numerators are treated exactly. In this way we derive the eigenvalue condition that had been conjectured in [14].  相似文献   

3.
非定常可压等熵流非线性方程显式解析解的推导   总被引:22,自引:5,他引:17  
本文对作者以前凭试凑、灵感、运气与经验得出的一系列非定常可压流动显式解析解,寻找线索,总结出其可能的推导途径,并以非定常可压等熵一维流为例,具体给出了四种新的求解方法。这些方法会对今后寻找工程热物理领域的非线性主控方程的解析解有所帮助。本文同时还给出了两个新的解析解。  相似文献   

4.
In this paper, we introduce a fictitious dynamics for describing the only fast relaxation of a stiff ordinary differential equation (ODE) system towards a stable low-dimensional invariant manifold in the phase-space (slow invariant manifold – SIM). As a result, the demanding problem of constructing SIM of any dimensions is recast into the remarkably simpler task of solving a properly devised ODE system by stiff numerical schemes available in the literature. In the same spirit, a set of equations is elaborated for local construction of the fast subspace, and possible initialization procedures for the above equations are discussed. The implementation to a detailed mechanism for combustion of hydrogen and air has been carried out, while a model with the exact Chapman–Enskog solution of the invariance equation is utilized as a benchmark.  相似文献   

5.
G. Costanza 《Physica A》2009,388(13):2600-2622
The continuum evolution equations are derived from updating rules for three classes of stochastic models. The first class corresponds to models whose stochastic continuum equations are of the Langevin type obtained after carrying out a “local average” known as coarse-graining. The second class consists of a hierarchy of continuum equations for the correlations of the dynamical variables obtained after making an average over realizations. This average generates a hierarchy of deterministic partial differential equations except when the dynamical variables do not depend on the values of the neighboring dynamical variables, in which case a hierarchy of ordinary differential equations is obtained. The third class of evolution equations for the correlations of the dynamical variable constitutes another hierarchy after calculating an average over both realizations and all the sites of the lattice. This double average generates a hierarchy of deterministic ordinary differential equations. The second and third classes of equations are truncated using a mean field (m,n)-closure approximation in order to obtain a finite set of equations. Illustrative examples of every class are given.  相似文献   

6.
A stochastic optimal semi-active control strategy for randomly excited systems using electrorheological/magnetorheological (ER/MR) dampers is proposed. A system excited by random loading and controlled by using ER/MR dampers is modelled as a controlled, stochastically excited and dissipated Hamiltonian system with n degrees of freedom. The control forces produced by ER/MR dampers are split into a passive part and an active part. The passive control force is further split into a conservative part and a dissipative part, which are combined with the conservative force and dissipative force of the uncontrolled system, respectively, to form a new Hamiltonian and an overall passive dissipative force. The stochastic averaging method for quasi-Hamiltonian systems is applied to the modified system to obtain partially completed averaged Itô stochastic differential equations. Then, the stochastic dynamical programming principle is applied to the partially averaged Itô equations to establish a dynamical programming equation. The optimal control law is obtained from minimizing the dynamical programming equation subject to the constraints of ER/MR damping forces, and the fully completed averaged Itô equations are obtained from the partially completed averaged Itô equations by replacing the control forces with the optimal control forces and by averaging the terms involving the control forces. Finally, the response of semi-actively controlled system is obtained from solving the final dynamical programming equation and the Fokker-Planck-Kolmogorov equation associated with the fully completed averaged Itô equations of the system. Two examples are given to illustrate the application and effectiveness of the proposed stochastic optimal semi-active control strategy.  相似文献   

7.
本文运用达西流模型,对饱和含湿多孔介质中环绕水平等温圆柱发生的自然对流进行了数值模拟和分析。流函数和温度分布采用傅里叶级数的形式,以联立求解二维流动的控制方程组,傅里叶级数项的系数由一维常微分方程的解得到。文中同时给出局部和平均努谢尔数随修正瑞利数的变化关系以及修正瑞利数处在0.1~10范围内时二维流场和温度场分布。  相似文献   

8.
The achievement of suitable toroidal-current-density profiles in tokamak plasmas plays an important role in enabling high fusion gain and noninductive sustainment of the plasma current for steady-state operation with improved magnetohydrodynamic stability. The evolution in time of the current profile is related to the evolution of the poloidal magnetic flux, which is modeled in normalized cylindrical coordinates using a partial differential equation (PDE) usually referred to as the magnetic flux diffusion equation. The dynamics of the plasma current density profile can be modified by the total plasma current and the power of the noninductive current drive. These two actuators, which are constrained not only in value and rate but also in their initial and final values, are used to drive the current profile as close as possible to a desired target profile at a specific final time. To solve this constrained finite-time open-loop PDE optimal control problem, model reduction based on proper orthogonal decomposition is combined with sequential quadratic programming in an iterative fashion. The use of a low-dimensional dynamical model dramatically reduces the computational effort and, therefore, the time required to solve the optimization problem, which is critical for a potential implementation of a real-time receding-horizon control strategy.   相似文献   

9.
A numerical search for the simplest chaotic partial differential equation (PDE) suggests that the Kuramoto-Sivashinsky equation is the simplest chaotic PDE with a quadratic or cubic nonlinearity and periodic boundary conditions. We define the simplicity of an equation, enumerate all autonomous equations with a single quadratic or cubic nonlinearity that are simpler than the Kuramoto-Sivashinsky equation, and then test those equations for chaos, but none appear to be chaotic. However, the search finds several chaotic, ill-posed PDEs; the simplest of these, in the discrete approximation of finitely many, coupled ordinary differential equations (ODEs), is a strikingly simple, chaotic, circulant ODE system.  相似文献   

10.
Karhunen-Loeve decomposition is done on a chaotic spatio-temporal solution obtained from a nonlinear reaction-diffusion model of a chemical system simulating a chemical process in an open Couette-flow reactor. Using a Galerkin projection of the dominant Karhunen-Loeve modes back onto the nonlinear partial differential system, we obtain an ordinary differential equation model of the same process. Major features such as intermittent and chaotic bursting of the nonlinear process as well as the mechanism of transition to chaos are shown to exist in the low-dimensional model as well as the PDE model. From the low-dimensional model the onset of intermittent bursts followed by small amplitude oscillations is shown to arise due to a sequence of saddle-node bifurcations.  相似文献   

11.
The problem of preserving fidelity in numerical computation of nonlinear ordinary differential equations is studied in terms of preserving local differential structure and approximating global integration structure of the dynamical system. The ordinary differential equations are lifted to the corresponding partial differential equations in the framework of algebraic dynamics, and a new algorithm—algebraic dynamics algorithm is proposed based on the exact analytical solutions of the ordinary differential equations by the algebraic dynamics method. In the new algorithm, the time evolution of the ordinary differential system is described locally by the time translation operator and globally by the time evolution operator. The exact analytical piece-like solution of the ordinary differential equations is expressed in terms of Taylor series with a local convergent radius, and its finite order truncation leads to the new numerical algorithm with a controllable precision better than Runge Kutta Algorithm and Symplectic Geometric Algorithm.  相似文献   

12.
Hang Xu  Jie Cang 《Physics letters. A》2008,372(8):1250-1255
The time fractional wave-like differential equation with a variable coefficient is studied analytically. By using a simple transformation, the governing equation is reduced to two fractional ordinary differential equations. Then the homotopy analysis method is employed to derive the solutions of these equations. The accurate series solutions are obtained. Especially, when ?f=?g=−1, these solutions are exactly the same as those results given by the Adomian decomposition method. The present work shows the validity and great potential of the homotopy analysis method for solving nonlinear fractional differential equations. The basic idea described in this Letter is expected to be further employed to solve other similar nonlinear problems in fractional calculus.  相似文献   

13.
Using functional derivative technique in quantum field theory, the algebraic dynamics approach for solution of ordinary differential evolution equations was generalized to treat partial differential evolution equations. The partial differential evolution equations were lifted to the corresponding functional partial differential equations in functional space by introducing the time translation operator. The functional partial differential evolution equations were solved by algebraic dynamics. The algebraic dynamics solutions are analytical in Taylor series in terms of both initial functions and time. Based on the exact analytical solutions, a new numerical algorithm—algebraic dynamics algorithm was proposed for partial differential evolution equations. The difficulty of and the way out for the algorithm were discussed. The application of the approach to and computer numerical experiments on the nonlinear Burgers equation and meteorological advection equation indicate that the algebraic dynamics approach and algebraic dynamics algorithm are effective to the solution of nonlinear partial differential evolution equations both analytically and numerically. Supported by the National Natural Science Foundation of China (Grant Nos. 10375039, 10775100 and 90503008), the Doctoral Program Foundation of the Ministry of Education of China, and the Center of Nuclear Physics of HIRFL of China  相似文献   

14.
In this paper, the theory of constructing optimal dynamical systems based on weighted residual presented by Wu & Sha is applied to three-dimensional Navier-Stokes equations, and the optimal dynamical system modeling equations are derived. Then the multiscale global optimization method based on coarse graining analysis is presented, by which a set of approximate global optimal bases is directly obtained from Navier-Stokes equations and the construction of optimal dynamical systems is realized. The optimal bases show good properties, such as showing the physical properties of complex flows and the turbulent vortex structures, being intrinsic to real physical problem and dynamical systems, and having scaling symmetry in mathematics, etc.. In conclusion, using fewer terms of optimal bases will approach the exact solutions of Navier-Stokes equations, and the dynamical systems based on them show the most optimal behavior.  相似文献   

15.
In this paper, a modern exact method is proposed for solving the problem of free vibrations of a Timoshenko-type viscoelastic beam with discrete rigid bodies, connected to the beam by means of viscoelastic constraints. The phenomenon of free vibrations of this discrete-continuous system is described by a set of three partial and two subsystem ordinary differential equations with generalized boundary conditions and initial conditions. Vector notation of the equations allows one to identify the self-adjoint linear operators of inertia, stiffness and damping. In this case, these operators are not homothetic hence a separation of variables in this set of equations is possible only in a complex Hilbert space. Such separation of variables leads to ordinary differential equations of motion with respect to time as well as to a set of three ordinary differential equations with respect to a spatial variable and two subsystem algebraical equations. Solution of the boundary-value problem was carried out in the classical way, but its results are complex conjugated. Using these results and the fundamental principle, describing the orthogonality property of complex eigenvectors, the problem of free vibrations of the system with arbitrary initial conditions has been finally solved exactly.  相似文献   

16.
A rigorous, fast and efficient method is proposed for analytical extraction of guided defect modes in two-dimensional photonic crystals, where each Bloch spatial harmonic is expanded in terms of Hermite-Gauss functions. This expansion, after being substituted in Maxwell’s equations, is analytically projected in the Hilbert space spanned by the Hermite-Gauss basis functions, and then a new set of first order coupled linear ordinary differential equations with non-constant coefficients is obtained. This set of equations is solved by employing successive differential transfer matrices, whereupon defect modes, i.e. the guided modes propagating in the straight line-defect photonic crystal waveguides and coupled resonator optical waveguides, are analytically derived. In this fashion, the governing differential equations are converted into an algebraic and easy to solve matrix eigenvalue problem. Thanks to the analyticity of the proposed approach, the eigenmodes of these structures can be extracted very quickly. The validity of the obtained results is however justified by comparing them to those derived by using the standard finite-difference time-domain method.  相似文献   

17.
套格图桑  伊丽娜 《物理学报》2014,63(21):210202-210202
通过下列步骤,获得了sine-Gordon型方程的新解.第一步、通过函数变换,把sine-Gordon方程与sinhGordon方程的求解问题转化为两种非线性常微分方程的求解问题.第二步、获得了两种非线性常微分方程与第一种椭圆方程的拟B?cklund变换.第三步、利用第一种椭圆方程的B?cklund变换与新解,构造了sine-Gordon型方程的无穷序列新解.  相似文献   

18.
孔新雷  吴惠彬 《物理学报》2017,66(8):84501-084501
由于非线性,最优控制问题通常依赖于数值求解,即通过离散目标泛函和受控运动方程转化为一有限维的非线性最优化问题.最优控制问题中的受控运动方程在表示为受控Birkhoff方程的形式之后,可以利用受控Birkhoff方程的离散变分差分格式进行离散.与按照传统差分格式近似受控运动方程相比,此途径可以诱导更加真实可靠的非线性最优化问题,进而也会诱导更加精确有效的离散最优控制.应用于航天器交会对接问题,该种数值求解最优控制问题的方法在较大时间步长的情况下仍然求得了一个有效实现交会对接的离散最优控制.模拟结果验证了该方法的有效性.  相似文献   

19.
张丽香  刘汉泽  辛祥鹏 《物理学报》2017,66(8):80201-080201
运用李群分析,得到了广义(3+1)维Zakharov-Kuznetsov(ZK)方程的对称及约化方程,结合齐次平衡原理,试探函数法和指数函数法得到了该方程的群不变解和新精确解,包括冲击波解、孤立波解等.进一步给出了广义(3+1)维ZK方程的伴随方程和守恒律.  相似文献   

20.
In this paper, we present the theory of constructing optimal generalized helical-wave coupling dynamical systems. Applying the helical-wave decomposition method to Navier-Stokes equations, we derive a pair of coupling dynamical systems based on optimal generalized helical-wave bases. Then with the method of multi-scale global optimization based on coarse graining analysis, a set of global optimal generalized helical-wave bases is obtained. Optimal generalized helical-wave bases retain the good properties of classical helical-wave bases. Moreover, they are optimal for the dynamical systems of Navier-Stokes equations, and suitable for complex physical and geometric boundary conditions. Then we find that the optimal generalized helical-wave vortexes fitted by a finite number of optimal generalized helical-wave bases can be used as the fundamental elements of turbulence, and have important significance for studying physical properties of complex flows and turbulent vortex structures in a deeper level.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号