首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 359 毫秒
1.
A film of nascent powder of polytetrafluoroethylene (PTFE), compacted below the ambient melting temperature (Tm, 335 °C), was drawn by two‐stage draw techniques consisting of a first‐stage solid‐state coextrusion followed by a second‐stage solid‐state coextrusion or tensile draw. Although the ductility of extrudates was lost for the second‐stage tensile draw at temperatures above 150 °C due to the rapid decrease in strength, as previously reported, the ductility of extrudates increased with temperature even above 150 °C when the second‐stage draw was made by solid‐state coextrusion, reflecting the different deformation flow fields in a free space for the former and in an extrusion die for the latter. Thus, a powder film initially coextruded to a low extrusion draw ratio (EDR) of 6–20 at 325 °C was further drawn by coextrusion to EDRs up to ~?400 at 325–340 °C, near the Tm. Extremely high chain orientation (fc = 0.998 ± 0.001), crystallinity (96.5 ± 0.5)%, and tensile modulus (115 ± 5 GPa at 24 °C, corresponding to 73% of the X‐ray crystal modulus) were achieved at high EDRs. Despite such a morphological perfection and a high modulus, the tensile strength of a superdrawn tape, 0.48 ± 0.03 GPa, was significantly low when compared with those (1.4–2.3 GPa) previously reported by tensile drawing above the Tm. Such a low strength of a superdrawn, high‐modulus PTFE tape was ascribed to the low intermolecular interaction of PTFE and the lack of intercrystalline links along the fiber axis, reflecting the initial chain‐extended morphology of the nascent powder combined with the fairly high chain mobility associated with the crystal/crystal transitions at around room temperature. © 2006 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 44: 3369–3377, 2006  相似文献   

2.
A new two‐stage draw technique was successfully applied to the superdrawing of polytetrafluoroethylene (PTFE) virgin powder. A film, compression‐molded from powder below the melting temperature (Tm = 335 °C), was initially solid‐state coextruded to an extrusion draw ratio (EDR) of 6–20 at 325 °C, about 10 °C below the Tm. These extrudates from the first‐stage draw were further drawn by a second‐stage pin draw in the temperature (Td) range of 300–370 °C that covers the static Tm. The maximum achievable total draw ratio was ~60 at a Td = 300 °C and increased rapidly with increasing Td, reaching a maximum of 100–160 at a temperature window between 340 and 360 °C, depending on the initial EDRs. At yet higher Td's, the ductility was lost as a result of melting. The high ductility of the PTFE extrudates at such high temperatures was ascribed to the improvement of interfacial adhesion and bonding between the deformed powder particles upon the first‐stage extrusion combined with the rapid heating of only a portion of the extrudate followed by the elongation at a high rate. The highly drawn fibers were highly crystalline (χc ≤ 87%) and showed high chain orientation (fc ≤ 0.997) and a large crystallite size along the chain axis (D0015 ≤ 160 nm). The molecular draw ratio, estimated from the entropic shrinkage above the Tm, was close to the macroscopic deformation ratio independently of the initial EDRs. These results indicate that the draw was highly efficient in terms of chain extension, orientation, and crystallization. Thus, the maximum tensile modulus and strength achieved in this work were 102 ± 5 and 1.4 ± 0.2 GPa, respectively, at 24 °C. These tensile properties are among the highest ever reported on oriented PTFE. © 2001 John Wiley & Sons, Inc. J Polym Sci Part B: Polym Phys 39: 1995–2004, 2001  相似文献   

3.
Films of uniaxially oriented poly(ethylene terephthalate) (PET), M v = 81,000, have been drawn by solid-state coextrusion in the range 40–100°C surrounded by polyethylene. This is well below the PET melting temperature and in some cases below its glass transition temperature. Properties of the extrudates, such as degree of crystallinity, mechanical and thermal properties, were investigated as a function of coextrusion temperature and draw ratio (EDR ≤ 4.4). The results show that the percent crystallinity depends strongly on draw ratio, whereas its sensitivity to extrusion temperature is limited only to the highest draw ratio (4.4). On the other hand, Young's modulus was sensitive to both extrusion temperature and draw ratio, exhibiting a maximum at EDR = 4.4 and Text = 65°C. Above this temperature, moduli decrease apparently because of increased chain mobility, resulting in dissipation of chain orientation. Furthermore, changes in yield and tensile strength followed the changes in mechanical properties, suggesting that they are dominated by the same factors. The cold-crystallization temperature TCC also revealed information about the morphological changes occurring during the extrusion drawing. For samples of EDR = 4.4, TCC increased with extrusion temperature, suggesting again dissipation of orientation by thermal motions. On the other hand, TCC decreases with EDR, and a ΔTCC as high as 73°C was found. Conventional drawing of amorphous PET has been widely reported. To our knowledge this is the first time oriented PET has been prepared using the advantages of solid-state coextrusion.  相似文献   

4.
Melt-crystallized films of poly(L -lactic acid) (PLLA) with Mv in the range of 3.8 ∼ 46 × 104 consisting of α-form crystals were uniaxially drawn by solid-state coextrusion. The effects of Mv, extrusion draw ratio (EDR), and extrusion temperature (Text) on the crystal/crystal transformation from α- to β-form crystals and the resultant tensile properties of drawn products were studied. The crystal transformation proceeded with EDR and more rapidly for the higher Mv's. Furthermore, the crystal transformation proceeded most rapidly with EDR at a Text around 130 °C, independently of the Mv's. As a result of the optimum combination of processing variables influencing the the crystal transformation (Mv, Text, and drawability), highly oriented films consisting of β-form crystals alone were obtained by coextrusion of higher Mv samples at Text's slightly below the melting temperature (150 ∼ 170 °C) and at higher EDR's > 11. Both the tensile modulus and strength increased rapidly with EDR. The modulus at a given EDR was slightly higher for the samples with higher Mv's. In contrast, the strength at a given EDR was remarkably higher for the higher M v's. The highest tensile modulus of 8.0 GPa and strength of 500 MPa were obtained with the sample of the highest Mv of 46 × 104 coextruded at 170 °C to the highest EDR of 14.  相似文献   

5.
Ultradrawing of atactic poly(acrylonitrile) (PAN) was investigated for a Mv series, ranging 8.0 × 104–2.3 × 106. Samples for the draw were prepared from 0.5–30 wt % solutions of PAN in N,N′-dimethylformamide. The solutions were converted to a gel by quenching from 100 to 0°C. The dried gel films were initially drawn uniaxially by solid-state coextrusion (first-stage draw) to an extrusion draw ratio (EDR) of 16, followed by further tensile draw at 100–250°C (second-stage draw). The maximum total draw ratio (DRt,max) and tensile properties achieved by two-stage draw increased remarkably with sample Mv. Other factors affecting ductility were the solution concentration from which gel was made and the second-stage draw temperature. The effects of these variables became more prominent with increasing Mv. The temperature for optimum second-stage draw increased with sample Mv. Both the initial gel and the drawn products showed no small-angle X-ray long period scattering maximum, suggesting the absence of a chain-folded lamellae structure, which had been found in our previous study on the drawing of nascent PAN powder. The chain orientation function (fc) and sample density (ρs) increased rapidly with DRt in the lower range (DRt < 30) and approached constant values of fc = 0.980–0.996 and ρs = 1.177–1.181 g/cm3, respectively, at higher DRt > 30–100. The tensile modulus also showed a similar increase with DRt. The tensile strength increased linearly with DRt, reaching a maximum, and decreased slightly at yet higher DRt. The highest modulus of 28.5 GPa and strength of 1.6 GPa were achieved with the highest Mv of 2.3 × 106. © 1998 John Wiley & Sons, Inc. J Polym Sci B: Polym Phys 36: 629–640, 1998  相似文献   

6.
Gel films of poly(vinylidene fluoride) (PVDF) consisting of α‐form crystals were drawn uniaxially by solid‐state coextrusion to extrusion draw ratios (EDR) up to 9 at an optimum extrusion temperature of 160 °C, about 10°C below the melting temperature (Tm). The development of an oriented structure and mechanical and electrical properties on coextrusion drawing were studied as a function of EDR. Wide‐angle X‐ray diffraction patterns showed that the α crystals in the original gel films were progressively transformed into oriented β‐form crystals with increasing EDR. At the highest EDR of 9 achieved, the drawn product consisted of a highly oriented fibrous morphology with only β crystals even for the draw near the Tm. The dynamic Young's modulus along the draw direction also increased with EDR up to 10.5 GPa at the maximum EDR of 9. The electrical properties of ferroelectricity and piezoelectricity were also markedly enhanced on solid‐state coextrusion. The DE square hysteresis loop became significantly sharper with EDR, and a remanent polarization Pr of 100 mC/m2 and electromechanical coupling factor along the thickness direction kt of 0.27 were achieved at the maximum EDR of 9. The crystallinity value of 73–80% for the EDR 9 film, estimated from these electrical properties, compares well with that calculated by the ratio of the crystallite size along the chain axis to the meridional small‐angle X‐ray scattering (SAXS) long period, showing the average thickness of the lamellae within the drawn β film. These results, as well as the appearance of a strong SAXS maximum, suggest that the oriented structure and properties of the β‐PVDF are better explained in terms of a crystal/amorphous series arrangement along the draw axis. Further, the mechanical and electrical properties obtained in this work are the highest among those ever reported for a β‐PVDF, and the latter approaches those observed for the vinylidene fluoride and trifluoroethylene copolymers. © 2001 John Wiley & Sons, Inc. J Polym Sci Part B: Polym Phys 39: 1371–1380, 2001  相似文献   

7.
The effects of drawing temperature on the physical and mechanical properties of poly(p-phenylene sulfide) have been studied. A melt-quenched film was drawn by solid-state coextrusion both below (75°C) and above (95 and 110°C) the glass transition temperature Tg (85°C) of PPS. The maximum extrusion draw ratio (EDRmax) increased from 3.4 to 5.6 with increasing extrusion temperature Te from 75 to 110°C. It was found that extrusion drawing just above the Tg of PPS (95°C) produced more stress-induced crystals. A high efficiency of draw in the amorphous region was achieved by extrusion at Te-75°C. The tensile modulus at EDRmax decreased from 5.1 to 3.5 GPa with increasing Te from 75 to 110°C. The low efficiency of draw for the samples extruded at 110°C is explained in terms of disentanglement and chain slippage during drawing due to a less effective network.  相似文献   

8.
Solid-state coextrusion has been used to prepare uniaxially drawn films from isotropic poly(ethylene 2,6-naphthalate) (PEN) of a minimum degree of crystallinity (ca. 5%) both below and above its glass transition temperature Tg. The onset of cold crystallization (Tc) of the drawn films has been studied as a function of the extrusion temperature (ET) and the draw ratio (EDR). It has been shown that Tc decreases markedly on draw, as much as 95°C, and, at constant draw ratio Tc goes through a minimum in the Tg region. For undrawn PEN, annealing below 153°C has no significant effect on Tc. To evaluate the crystallization rate constant (k) and the activation energy (Ea) of the drawn specimens, a nonisothermal DSC procedure has been used. With increasing EDR, k increases markedly and Ea goes down over threefold compared with the undrawn polymer. At high ET, strain-induced crystallization has also been shown to play an important role in lowering Ea for cold crystallization. Thermal shrinkage above Tm indicates a high elastic recovery, underlining the efficiency of deformation, ca. 93%, achieved by solid-state coextrusion.  相似文献   

9.
The drawing of semicrystalline (33 and 50%) poly(ethylene terephthalate) (PET) films has been studied by solid-state coextrusion. Because of its brittleness and opacity, isotropic and semicrystalline PET film is of little practical use. Early attempts to cold-draw crystalline films led to fracture in contrast to deformation of amorphous PET. However, we have succeeded in systematically preparing films with extrusion draw ratios ≤4.4 from semicrystalline PET. In many cases, the properties of the drawn extrudates, as a function of extrusion temperature Text and extrusion draw ratio EDR, were similar to those prepared from amorphous PET. However, some remarkable differences have also been found. In the case of coextrudates prepared from isotropic 50% crystalline PET, we found that the larger the deformation, the lower the apparent resulting crystallinity. In the extreme, a 34% reduction in crystallinity after deformation was observed. For the coextrudates drawn from initially 33% crystalline PET, slightly different behavior occurred. For Text ≤ 90°C, all extrudates showed crystallinities lower than the original isotropic film, with a minimum at EDR = 3; for Text ≥ 110°C, crystallinities were slightly greater than in the original film and increased with EDR. Qualitative measurements of heats of fusion were in agreement with density gradient results for PET crystallinity. In contrast is our previous finding that extrudates from initially amorphous PET always increase in crystallinity with EDR, because of stress-induced crystallization. The results now suggest that in the Text range investigated, the initial spherulitic structure is at least in part destroyed on drawing. In addition, the percent crystallinity is revealed to be dependent on Text, with lower values at lower temperatures. Mechanical tests show that the extrudates are similar or sometimes higher in tensile modulus when compared to amorphous PET drawn under the same conditions.  相似文献   

10.
Melt‐crystallized, low molecular weight poly(L ‐lactic acid) (PLLA) consisting of α crystals was uniaxially drawn by solid‐state extrusion at an extrusion temperature (Text) of 130–170 °C. A series of extrusion‐drawn samples were prepared at an optimum Text value of 170 °C, slightly below the melting temperature (Tm) of α crystals (~180 °C). The drawn products were characterized by deformation flow profiles, differential scanning calorimetry (DSC) melting thermograms, wide‐angle X‐ray scattering (WAXD), and small‐angle X‐ray scattering as a function of the extrusion draw ratio (EDR). The deformation mode in the solid‐state extrusion of semicrystalline PLLA was more variable and complex than that in the extensional deformation expected in tensile drawing, which generally gave a mixture of α and β crystals. The deformation profile was extensional at a low EDR and transformed to a parabolic shear pattern at a higher EDR. At a given EDR, the central portion of an extrudate showed extensional deformation and the shear component became progressively more significant, moving from the center to the surface region. The WAXD intensities of the (0010)α and (003)β reflections on the meridian as well as the DSC melting thermograms showed that the crystal transformation from the initial α form to the oriented β form proceeded rapidly with increasing EDR at an EDR greater than 4. Furthermore, WAXD showed that the crystal transformation proceeded slightly more rapidly at the sheath region than at the core region. This fact, combined with the deformation profiles (shear at the sheath and extensional at the core), indicated that the crystal transformation was promoted by shear deformation under a high pressure rather than by extensional deformation. Thus, a highly oriented rod consisting of only β crystals was obtained by solid‐state extrusion of melt‐crystallized, low molecular weight PLLA slightly below Tm. The structure and properties of the α‐ and β‐form crystals were also studied. © 2001 John Wiley & Sons, Inc. J Polym Sci Part B: Polym Phys 40: 95–104, 2002  相似文献   

11.
Poly(aryl-ether-ether-ketone) (PEEK) films and rods have been solid-state extruded at 154 and 310°C, respectively. The crystal orientation functions, melting behavior, density, and tensile properties of the drawn PEEK films (EDR ≤ 3.7) and rods (EDR ≤ 5.5) have been measured. As extrusion draw ratio (EDR) was increased, the c-axis orientation function, melting temperature, and tensile modulus and strength increased. Moduli up to 6.5 GPa and the strengths up to 600 MPa, 3 and 6 times the values of undrawn films, respectively, were obtained for the drawn films. The thermal expansivities along (α) and perpendicular (α?) to the draw direction of PEEK rods were measured from ?40 to +10°C. As EDR was increased, α? increased, but α decreased. At EDRs of 3.8 and 5.5, α even exhibited negative values (about ?5 × 10?6°C?1), probably due to reversible contraction of elongated tie-molecules.  相似文献   

12.
Oriented poly(vinylidene fluoride) (PVDF) films with β‐form crystals have been commonly prepared by cold drawing of a melt‐quenched film consisting of α‐form crystals. In this study, we have successfully produced highly oriented PVDF thin films (20 µm thick) with β‐crystals and a high crystallinity (55–76%), by solid‐state coextrusion of a gel film to eight times the original length at an established optimum extrusion temperature of 160°C, some 10°C below the melting temperature. The resultant drawn films had a highly oriented (orientation function fc = 0.993) fibrous structure, showing high mechanical properties of an extensional elastic modulus of 8.3 GPa and tensile strength of 0.84 GPa, along the draw direction. Such highly oriented and crystalline films exhibited excellent ferroelectric and piezoelectric properties. The square hysteresis loop was significantly sharper than that of a conventional sample. The sharp switching transient yielded the remnant polarization Pr of 90 mC/m2, and the electromechanical coupling factor kt was 0.24 at room temperature. These values are about 1.5 times greater than those of a conventional β‐PVDF film. Thus, solid‐state coextrusion near the melting point was found to be a useful technique for the preparation of highly oriented and highly crystalline β‐PVDF films with superior mechanical and electrical properties. The morphology of the extrudate relevant to such properties is discussed. © 1999 John Wiley & Sons, Inc. J Polym Sci B: Polym Phys 37: 2549–2556, 1999  相似文献   

13.
The effects of molecular weight (MW) and MW distribution on the maximum tensile properties of polyethylene (PE), achieved by the uniaxial drawing of solution‐grown crystal (SGC) mats, were studied. The linear‐PE samples used had wide ranges of weight‐average (Mw = 1.5–65 × 105) and number‐average MWs (Mn = 2.0–100 × 104), and MW distribution (Mw/Mn = 2.3–14). The SGC mats of these samples were drawn by a two‐stage draw technique, which consists of a first‐stage solid‐state coextrusion followed by a second‐stage tensile drawing, under controlled conditions. The optimum temperature for the second‐stage draw and the resulting maximum‐achieved total draw ratio (DRt) increased with the MW. For a given PE, both the tensile modulus and strength increased steadily with the DRt and reached constant values that are characteristic for the sample MW. The tensile modulus at a given DRt was not significantly affected by the MW in the lower DRt range (DRt < 50). However, both the maximum achieved tensile modulus (80–225 GPa) and strength (1.0–5.6 GPa), as well as those at higher DRts > 50, were significantly higher for a higher MW. Although the maximum modulus reached 225 ± 5 for Mn ≥ 4 × 105, the maximum strength continued to increase with Mn even for Mn > 4 × 105, showing that strength is more strongly dependent on the Mn, even at higher Mn. Furthermore, it was found that each of the maximum tensile modulus and strength achieved could be expressed by a unique function of the Mn, independently of the wide variations of the sample MW and MW distribution. These results provide an experimental evidence that the Mn has a crucial effect on the tensile properties of extremely drawn and chain‐extended PE fibers, because the structural continuity along the fiber axis increases with the chain length, and hence with the Mn. © 2005 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 44: 153–161, 2006  相似文献   

14.
We report a novel polyester material generated from readily available biobased 1,18-octadecanedicarboxylic acid and ethylene glycol possesses a polyethylene-like solid-state structure and also tensile properties similar to high density polyethylene (HDPE). Despite its crystallinity, high melting point (Tm=96 °C) and hydrophobic nature, polyester-2,18 is subject to rapid and complete hydrolytic degradation in in vitro assays with isolated naturally occurring enzymes. Under industrial composting conditions (ISO standard 14855-1) the material is biodegraded with mineralization above 95 % within two months. Reference studies with polyester-18,18 (Tm=99 °C) reveal a strong impact of the nature of the diol repeating unit on degradation rates, possibly related to the density of ester groups in the amorphous phase. Depolymerization by methanolysis indicates suitability for closed-loop recycling.  相似文献   

15.
The recently developed technique of solid-state coextrusion for ultradrawing semicrystalline thermoplastics has been applied in the preparation of self-reinforced high-density polyethylene extrudates. The extrudates consist of definite core and sheath phases composed of different molecular weights (Mw) in the range of 60,000–250,000 and different molecular weight distributions (Mw/Mn = 3.0–20). Concentric billets of two different phases were prepared for extrusion by in serting a polyethylene rod within a tubular billet of a different high-density polyethylene followed by melting the two phases to obtain bonding between them. The billet was then split longitudinally to increase extrusion speed and extruded at 120°C, 0.23 GPa through a conical die of extrusion draw ratio 25. Extrudates of high tensile modulus (38 GPa) and strength (0.50 GPa) could be produced in a steady state process at a rate near 0.25 cm/min. The tensile properties of the extrudates from either the single or concentric billets increased with average molecular weight and were insensitive to the molecular weight distribution of the constituent phases. Thermal analysis indicated a high deformation efficiency for the sheath and core phases of the extrudates by the coextrusion technique.  相似文献   

16.
Poly(4-methyl-1-pentene) (PMP) has been uniaxially compressed by a forging (equibiaxial) process. The rheology of the process has been examined for this semicrystalline polyolefin, melting point about 235°C. The yield energy, area under the compressive stress-strain curve up to the yield point, as a function of temperature was found to consist of two linear components of different slope. These two linear relations arise from the glassy and crystalline phases of PMP. The intercept temperature (Ti) at zero yield energy for the glassy phase has been evaluated. The attainable maximum compression ratio without sample rupture (CRmax) increased steadily on increasing forging temperature above Ti, and below Tm. In this range, the crystalline relaxation temperature (Tc), evaluated from an Arrhenius plot of yield stress was 160°C. Above Tc, a CRmax of 240 was reached. This value is five times higher than that attained for isotactic polypropylene (i-PP). However, the draw efficiency evaluated by elastic recovery in the plane direction of PMP (0.76) is lower than for i-PP (0.97). Differential scanning calorimetry analyses showed that the melting peak became a complex doublet on increasing compression ratio ( > 100). The drawing and stress-strain behavior of PMP are compared with i-PP. © 1994 John Wiley & Sons, Inc.  相似文献   

17.
By solid-state magic angle-spinning nuclear magnetic resonance spectroscopy (NMR), differential scanning calorimetry (DSC), and IR spectroscopy, polytetrafluoroethylene (PTFE) samples obtained by low-temperature (T = ?196°C) postradiation polymerization of tetrafluoroethylene (C2F4) and C2F4 mixtures with a 3D graphene material formed by the microwave exfoliation of graphite oxide films (MEGO) have been investigated. It has been shown that the melting point of PTFE in the PTFE-MEGO composite is 332.5°C, which is 8.8°C above the melting point of pure PTFE obtained under the same conditions. According to the measured values of specific enthalpy of melting ΔH m (51.5 and 45.4 J/g), the degrees crystallinity (x c) of 0.63 and 0.55 have been calculated for the pure polymer and the composite, respectively. It has been also found that none of the PTFE-containing samples examined has terminal CF3 groups typical of PTFE prepared by conventional suspension polymerization.  相似文献   

18.
Oriented poly(vinylidene fluoride) (PVDF) films consisting of β crystals were prepared by the solid‐state coextrusion (SC) of a gel film near the melting temperature (Tm) and by conventional cold tensile drawing (TD) of a melt‐quenched film. These films were annealed over the temperature range of 75–190 °C (below and above the static Tm) while the sample length was kept constant or constant loads were applied. After annealing with the sample length kept constant, the dynamic Young's modulus markedly decreased because of the relaxation of oriented amorphous chains, as shown by infrared spectroscopy. In contrast, annealing under a constant load improved the chain orientation in both the crystalline and amorphous regions, resulting in an increase in the modulus from an initial 10.5 to 14.3 GPa for the SC and from an initial 3.3 to 4.8 GPa for the TD. The SC, annealed at 190 °C with a constant load corresponding to an initial tension of 200 MPa, exhibited an extreme crystalline‐chain orientation of 0.998 and a modulus of 14.3 GPa, among the highest values ever reported for PVDF. Although the remanent polarization (Pr) of the TD increased slightly from the initial 62 to 68 mC/m2, Pr of the SC stayed constant at 100 mC/m2 independently of the annealing conditions. This suggests that the Pr value of 100 mC/m2 approached the equilibrium value for this PVDF sample containing 3.5 mol % structural defects. Therefore, although the modulus and Pr of the TD increased slightly with annealing, the maximum values achieved by annealing were markedly lower than those of the SC and annealed SC. © 2003 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 41: 1701–1712, 2003  相似文献   

19.
Summary Cholesterol constitutes the major component of most gallstones. It was identified and determined in gallstones by thermal analysis technique (DSC and TG-DTA), mainly by the use of the melting temperature (Tonset=145°C and Tmax=149°C) and by DTG peak decomposition (Tmax=364°C). Cholesterol anhydrous (ChA), which showed endothermic polymorphic peak, Tmax=40°C, without mass loss, was differentiated from cholesterol monohydrate (ChH), which showed a broad endothermic peak, Tmax=59°C, attributed to loss of water of crystallization (theoretical 4.45%). Morphological studies of gallstones were performed by optical microscopy and scanning electron microscopy (SEM). The stones consisted of a pigmented core with a variably-sized irregular central cavity, surrounded by a radially arranged deposits of plate-like ChH. The outer part of the stones showed ChA crystal arborescences. X-ray microanalysis gave a typical spectrum rich in C and O, and in some instances the presence of P, which was attributed to the presence of phospholipids. CaCO3 was easily characterized by TG with the use of DTG decomposition peak at 674°C.  相似文献   

20.
The effect of butyl acrylate (BA), divinyl benzene (DVB) and vinyltrimethoxysilane (TMVS) on the thermal properties of poly(methyl methacrylate-co-butyl acrylate-co-acrylic acid) was investigated. Glass transition temperature (Tg), melting temperature (Tm) and specific heat capacity of the copolymers were investigated using Differential Scanning Calorimetry. Thermal stability of the copolymers which is associated with the degradation temperature (Td) was studied by Thermogravimetric Analysis. Polyacrylates with Tg ranges between -19°Cand 19°C were obtained. With the incorporation of >7 wt% of DVB, the Tg of the copolymer increases from about ?17°C to ?10°C even though they have not undergone UV irradiation. Gel content results prove that crosslinking has occurred in the copolymers. With increasing amount of TMVS from 0 wt% to 7 wt%, the Tm of the copolymers prepared at acidic pH is about 40-60°C higher than that at the alkaline pH. However, the addition of TMVS gives no significant effect to the Tg and Td of the copolymer films. The thermal stability of the copolymer has improved with increasing amount of BA and DVB, with DVB being more effective. The highest Td of 425°C with 8% of DVB has been obtained. Consequently, a polyacrylate copolymer with a Tg of about ?13°C, a Tm of 170 °C and a Td of about 424°C has been successfully synthesized. Hence, the soft polyacrylate with its relatively high Tm and Td could serve as a superb material especially to be applied in the areas that require high melting temperature and good thermal stability.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号