首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Of the four subjects in an integrated science, technology, engineering, and mathematics (STEM) approach, mathematics has not received enough focus. This could be in part because mathematics teachers may be apprehensive or unsure about how to implement integrated STEM education in their classrooms. There are benefits to integrated STEM in a mathematics classroom though, including increased motivation, interest, and achievement for students. This article discusses three methods that middle school mathematics teachers can utilize to integrate STEM subjects. By focusing on open‐ended problems through engineering design challenges, mathematical modeling, and mathematics integrated with technology middle school students are more likely to see mathematics as relevant and valuable. Important considerations are discussed as well as recent research with these approaches.  相似文献   

2.
Problem-based learning (PBL) and science, technology, engineering, and mathematics (STEM) are two acronyms widely visible in education literature today. However, few studies have explored these in connection with one another, specifically with regard to teacher preparation. This study investigated how 47 prospective elementary teachers developed PBL units and how they integrated STEM and other disciplines into those units. It also addressed the affordances and constraints of integrated STEM as perceived by the prospective elementary teachers. Data sources in this multimethod study included PBL units and interviews. Findings revealed that all of the units integrated at least two of the STEM disciplines, as well as literacy, in a variety of ways. The prospective teachers articulated perceived benefits of integrated STEM, such as: making connections across content areas, preparing students for the real world, teaching students that failure is not a bad thing, and providing future opportunities. They also addressed perceived barriers of integrated STEM, such as: having limited experience with the content, diminishing the effect of individual content areas, and needing better curriculum alignment. Overall, this study provides evidence that PBL can be a pedagogical approach to integrate STEM. Implications for teachers, teacher educators, and curriculum specialists are discussed.  相似文献   

3.
Young children are capable of engaging in STEM investigations when they are guided by skilled and knowledgeable teachers. However, many elementary teachers may lack sufficient STEM content knowledge and report feeling unprepared to teach STEM content. Two university faculty members in mathematics and science education, worked to cultivate and advance two designated Elementary STEM‐Focused professional development schools through a two year series of an after‐school STEM professional development (PD) Program. As the STEM PD Program progressed, it became evident that teachers were interested in and needed more experiences with the elements of the engineering process for young learners. With this in mind, several of the PD sessions were designed to highlight the engineering process and allow teachers to experience various activities that would engage young learners. To examine how this focus on the engineering process impacted the teachers in this STEM PD Program, a research study was organized during year two of the STEM PD Program. The results of this study provide evidence that this program had a positive influence on the teacher participants’ engineering teacher efficacy and implementation of engineering lessons and activities within their classrooms.  相似文献   

4.
Although science, technology, engineering, and mathematics (STEM) education sits at the center of a national conversation, comparatively little attention has been given to growing need for STEM teacher preparation, particularly at the elementary level. This study analyzes the outcomes of a novel, preservice STEM teacher education model. Building on both general and STEM‐specific teacher preparation principles, this program combined two traditional mathematics and science methods courses into one STEM block. Analysis compared preservice teachers in the traditional courses with those enrolled in the STEM block, investigating STEM teaching efficacy, reported and exhibited pedagogical practices, and STEM literacies using a pre‐post survey as well as analysis of lesson planning products. Linear regression models indicated that substantial growth was seen in both approaches but STEM block preservice teachers reported significantly greater gains in STEM teaching efficacy as compared with traditional‐route teachers. Lesson planning artifacts also demonstrated increased facilitation of STEM literacies, with specific attention to content integration, engineering and design, and arts inclusion. Technology and computational thinking emerged as areas for further growth and clarification in STEM teacher education models. Findings contribute to a growing research base on developing the STEM teacher workforce.  相似文献   

5.
The purpose of the current study was to evaluate the impact of co‐taught integrated STEM methods instruction on preservice elementary teachers’ self‐efficacy for teaching science and mathematics within an integrated STEM framework. Two instructional methods courses (Elementary Mathematics Methods and Elementary Science Methods) were redesigned to include STEM integration components, including STEM model lessons co‐taught by a mathematics and science educator, as well as a special education colleague. Quantitative data were gathered at three time points in the semester (beginning, middle, and end) from 55 preservice teachers examining teacher self‐efficacy for integrated STEM teaching. Qualitative data were gathered from a purposeful sample of seven preservice teachers to further understand preservice teachers’ perceptions on delivering integrated STEM instruction in an elementary setting. Quantitative results showed a significant increase in teacher self‐efficacy across all three time points. Item‐level analysis revealed that self‐efficacy for tasks involving engineering and assessment (both formative and summative) were low across time points, while self‐efficacy for tasks involving technology and flexibility were consistently high. Qualitative results revealed that the preservice teachers did not feel adequately prepared by university‐level science and mathematics courses, in terms of content knowledge and integration of science and mathematics for elementary students.  相似文献   

6.
The integration of mathematics and science teaching and learning facilitates student learning, engagement, motivation, problem-solving, criticality and real-life application. However, the actual implementation of an integrative approach to the teaching and learning of both subjects at classroom level, with in-service teachers working collaboratively, at second-level education, is under-researched due to the complexities of school-based research. This study reports on a year-long case study on the implementation of an integrated unit of learning on distance, speed and time, within three second-level schools in Ireland. This study employed a qualitative approach and examined the key aspects of practice that impact on the integration of mathematics and science teaching and learning. We argue that teacher perspective, teacher knowledge of the ‘other subject’ and of technological pedagogical content knowledge (TPACK), and teacher collaboration and support all impact on the implementation of an integrative approach to mathematics and science education.  相似文献   

7.
Teachers involved in a Master's level course in diversity participated in virtual, synchronous, anonymized discussions around issues of ethnic and racial diversity, gender, and stereotypes that could impact their students’ participation in fields related to science, technology, engineering, and mathematics (STEM). Guided by theoretical frameworks from Social Cognitive Career Theory (SCCT) and Critical Race Theory (CRT), a convenience sample of 14 science and mathematics teachers participated in a series of virtual chats using open‐ended questioning and facilitated by two university instructors. Using conversation and critical discourse analyses, three primary themes emerged: understanding of issues related to stereotypes, encouragement of females and minorities to pursue careers in STEM, and the place for diversity discussions in science and mathematics classrooms. The teachers felt burdened by curricular and administrative constraints that inhibit their ability to participate in thought‐provoking critical conversations. The paper concludes with a discussion of ways teachers can assist in the STEM career identity development of their underrepresented females and students of color and calls for research that combines the key findings in SCCT and CRT to build confidence and capacity for teachers to effectively confront issues of racism, sexism, and stereotyping in science and mathematics classrooms.  相似文献   

8.
“As the world becomes increasingly technological, the value of (the ideas and skills of its population) will be determined in no small measure by the effectiveness of science, technology, engineering, and mathematics (STEM) education in the United States” and “STEM education will determine whether the United States will remain a leader among nations and whether we will be able to solve immense challenges in such areas as energy, health, environmental protection, and national security” (President's Council of Advisors on Science and Technology, 2010, p. vii). Research on the effectiveness of STEM‐focused school and other learning experiences (e.g., short‐term camps) on student attitudes and performance outcomes is sparse. In this study, we documented the influence of an intensive STEM summer program on high school students’ attitudes toward STEM concepts and interests in STEM careers. Attending the summer program was associated with gains on students’ attitudes toward some aspects of STEM as well as specific career interests. Notably, students reported statistically significant views of important aspects of STEM and their attitudes toward science and mathematics were more positive than their attitudes about engineering and technology.  相似文献   

9.
Objective: In this study, we investigated the implementation of project‐based learning (PBL) activities in four secondary science, technology, engineering, and mathematics (STEM) education settings to examine the impact of inquiry based instructional practices on student learning. Method: Direct classroom observations were conducted during the 2013–2014 school year in STEM Traditional Courses, a STEM Platform School, an Engineering Optional Program (EOP), and a Virtual STEM Academy (VSA) to measure teacher instructional practices (School Observation Measure) and student engagement (The Rubric for Student‐Centered Activities). Results: The four approaches to STEM education showed significant differences in their implementation of PBL, with the EOP and VSA having higher incidences of PBL activities. Additionally, higher‐level questioning strategies, higher‐order instructional feedback, and integration of STEM subject areas was absent or rarely observed. Conclusions: Components of PBL are missing in STEM education, in traditional and non‐traditional STEM courses. In‐service teachers may benefit from professional development that enhances their understanding of PBL activities to maximize student learning opportunities.  相似文献   

10.
This is a case study of the implementation of state STEM (science, technology, engineering, and mathematics) policy over the period of the first 18 months of building a regional STEM partnership. Fullan's change theory is the framework used to determine progress and associated challenges with building a regional STEM educational partnership and establishment of STEM schools through a sustained education reform effort. Key stakeholders who were involved in leading this effort participated in focus groups, as well as individual interviews. Archival documentation was also used. Findings indicate implementation of STEM policy in this state experienced some barriers because of the nature of funding and timeline, as well as the competing agendas and interests of partners who did not have the opportunity to develop common vision and strategic plans prior to implementation. Implications for STEM policy decisions and implementation of other efforts through Race to the Top and other federal funding sources are discussed.  相似文献   

11.
The study was situated in a National Science Foundation supported Math Science Partnership between a private university and an urban school district. This study sought to understand the decision‐making process of elementary teachers as they implement an integrated science, technology, engineering, and mathematics (STEM) curriculum in their classrooms and the interactions that occur between the teachers and curriculum during that process. This qualitative study utilized a comparative case study approach to understanding the decision‐making process of three elementary teachers enacting the same lesson. Analysis of the interactions revealed that the teachers' perceptions of student ability, their pedagogical design capacity, and time were influences that impacted implementation. These findings have implications for STEM‐focused professional development of elementary teachers.  相似文献   

12.
13.
Over the past 5 years, integrated science and mathematics professional development programs for grades 4‐10 science and mathematics teachers have been designed and implemented at Wright State University. The primary goals of the programs were to enhance the science and mathematics content understanding and pedagogical knowledge of the participant teachers in order to increase teacher confidence and promote the implementation of standards‐based teaching practices in precollege classrooms. In this article, the general program structure developed and implemented over the years is discussed. Focusing on the 1999 program, evidence is presented of enhanced participant content understanding and pedagogical preparation, and specific examples of modified teacher practices are discussed.  相似文献   

14.
This study investigates grades 5 and 6 science, technology, engineering, and mathematics (STEM) teachers' planned and actualized engineering design‐based instruction, the instruments used to characterize their efforts, and the implications this work has for teachers' implementations of an integrated approach to STEM education. Participants included 23 STEM teachers from six schools (three rural, two suburban, and one urban). Data were gathered via lesson implementation plans and classroom observations. Teachers demonstrated strength in planning for standards‐ and engineering design‐based lessons, incorporating engineering practices within their respective implementation plans, and aligning their plans with content and design process standards. Missing from their plans was attention to science concepts and their placement, use, and application within a design task. Classroom observations indicated that the teacher participants gave priority to “front loading,” the design process by concentrating more of their instructional time on problem identification and planning and less time on testing designs, communicating performance results, and redesigning. Measures utilized in this study provided insight into the content of teachers' planning and subsequent instruction and suggest potential for capturing content planning in the context of classrooms in which teachers are attempting to integrate novel curriculum, such as the new standards for engineering practices.  相似文献   

15.
This study of a state‐funded, 3‐year implementation of an integrated STEM professional development (PD) program for teachers from two middle schools in the midwestern U.S. examined if participants in the PD were enabled to transform their practice and perceptions of STEM. An integrated STEM approach includes a focus on the STEM disciplines, along with leveraging social studies/history and English/language arts as important context and tools for solving society’s biggest challenges. Findings in this study indicated that teachers implemented more effective STEM teaching strategies and had more positive perceptions regarding STEM overall. Further, participants became more aware of their personal needs for resources and support to teach through integrated STEM. Implications for research and practice are discussed.  相似文献   

16.
In this paper we report findings from a two-year, large-scale research project that describes the work of middle school mathematics specialists (also referred to as mathematics coaches or instructional coaches) who served in 10 school districts. We use mixed methods to describe how mathematics specialists spent their time supporting teachers and how these supports contributed to meaningful changes that teachers made in their instructional practices. We also report results that correlate student achievement scores with whether or not teachers were highly engaged with the mathematics specialists. We coordinate these quantitative results with findings from several case studies to illustrate the qualitatively different ways that mathematics specialists supported teachers’ ongoing work with their students. We also account for why some teachers participated more fully than others. Importantly, because mathematics specialists’ work was situated in different school settings with different demands, resources and administrative supports, these constraints and affordances contributed in part to how they could effectively support teachers’ work with their students.  相似文献   

17.
We explore the relationship between national standards as policy recommendations and the transformation of those recommendations into programs for school science and mathematics. We provide a brief introduction to national standards, propose a strategic framework for standards-based reform, and offer a discussion of specific challenges associated with the improvement of contemporary science and mathematics education. A set of features common to the NCTM and the NRC standards is described. The strategic-framework focuses on dissemination, interpretation, implementation, evaluation, and revision. Challenges include implementing school programs for all students, understanding inquiry and problem solving; thinking differently about curriculum; increasing instructional effectiveness; and aligning assessment strategies with standards.  相似文献   

18.
Engineering design‐based STEM integration is one potential model to help students integrate content and practices from all of the STEM disciplines. In this study, we explored the intersection of two aspects of pre‐college STEM education: the integration of the STEM disciplines, and the NGSS practice of engaging in argument from evidence within engineering. Specifically, our research question was: While generating and justifying solutions to engineering design problems in engineering design‐based STEM integration units, what STEM content do elementary and middle school students discuss? We used naturalistic inquiry to analyze student team audio recordings from seven curricular units in order to identify the variety of STEM content present as students justified their design ideas and decisions (i.e., used evidence‐based reasoning). Within the four disciplines, fifteen STEM content categories emerged. Particularly interesting were the science and mathematics categories. All seven student teams used unit‐based science, and five used unit‐based mathematics, to support their design ideas. Five teams also applied science and/or mathematics content that was outside the scope of the units' learning objectives. Our results demonstrate that students integrated content from all four STEM disciplines when justifying engineering design ideas and solutions, thus supporting engineering design‐based STEM integration as a curricular model.  相似文献   

19.
In this article, we describe the experiences of three Elementary Mathematics Specialists (EMS) who were part of a larger project investigating the impact of EMS certification and assignment (self-contained or “departmentalized”) on teaching practices and student achievement outcomes. All three of the teachers were “departmentalized,” in the sense that each was responsible for teaching mathematics to at least two groups of students, and accordingly, did not teach all subjects as would a typical self-contained elementary teacher. Each teacher had recently earned an Elementary Mathematics Specialist certificate through completion of a 24-credit, graduate-level program designed to build pedagogical content knowledge and leadership capacity in mathematics. Through a series of observations and interviews over the course of one school year, we examined how the teachers described and navigated specific affordances and constraints they encountered in their particular contexts. Common affordances included opportunities to revise and learn from instruction, and constraints included reduced flexibility introduced by the need to schedule multiple classes of mathematics. Despite these common features, we found important differences between the three models of departmentalization, which we describe as team approach, class swap, and grade-level mathematics teacher. For example, some of the models provided more opportunities for collaboration while others made it difficult for teachers to address potential inequities in learning opportunities across sections. Despite the constraints of their respective models, we found evidence of the EMS-certified teachers drawing on professional expertise in mathematics to meet student needs.  相似文献   

20.
Visions of science teaching and learning in the newest U.S. standards documents are dramatically different than those found in most classrooms. This research addresses these differences through closely examining one professional development (PD) project that connects teacher learning and teacher practice with student learning/achievement. This study examines the effects on eighth grade science teachers and their students in the context of a PD focused on the integration of information communication technologies and reformed science teaching practices. Findings from this investigation suggest that teachers who participated in PD for two years learned more about technology, improved their practice, and their students’ achievement was significantly higher compared to teachers who participated in one year of the PD or non‐participating peers. Science educators face multiple challenges as they attempt to deliver instruction in fundamentally different ways than what they experienced as learners. The delivery of this professional learning suggest that PD for science teachers should include educative learning experiences if understandings of reforms supported by research are to be realized.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号